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SUMMARY

A method for using system identification techniques to improve airframe finite element models
using test data has been developed and demonstrated. The method uses linear sensitivity matrices
to relate changes in selected physical parameters to changes in the total system matrices. The
values for these physical parameters were determined using constrained optimization with singular
value decomposition. The method was confirmed using both simple and complex finite element
models for which pseudo-experimental data was synthesized directly from the finite element
model. The method was then applied to a real airframe model which incorporated all of the
complexities and details of a large finite element model and for which extensive test data was
available. The method was shown to work, and the differences between the identified model and
the measured results were considered satisfactory.
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NOMENCLATURE

: coefficient matrix

: damping matrix

- damping matrix for analytical model

. grouped element damping matrix

: lambda matrix

: stiffness matrix

. stiffness matrix for analytical model

: grouped element stiffness matrix

: mass matrix

. mass matrix for analytical model

: grouped element mass matrix

. displacements at the n degrees of freedom
- n independent forces applied at each DOF

: ZA

: imaginary component of U

- real component of U

: LA

: imaginary component of V

: real component of V

1z,

. imaginary component of W

: real component of W

- redefined displacement vector

- redefined applied force vector

. (dURTM+dVRTCA+dWRTK )

: -(dU™M 4 +dV{TC ,+dW['K )

: special modal matrices defined in this paper
: eigenvalue

. adjustable physical mass quantities

. adjustable physical damping quantities

: adjustable physical stiffness quantities

- real component of the complex eigenvalue
: eigenvalue

: modal matrix

: imaginary component of the complex eigenvalue
: rth modal column

: n x 2n rectangular modal matrix

. modal coordinates matrix

: modal matrix
. differences between experimental data and analytical data



INTRODUCTION

kgroun

The vast bulk of the work reported to date on identification of structural dynamic systems has
focused on identifying mathematical models that reproduce test results, but little consideration has
been given to the physical basis for the identified system equations. Typically, the identification
procedures make systematic adjustments to the system equation, commonly to the stiffness and/or
mass matrices but also to the damping matrix, so that the identified eigenvalues and eigenvectors
reproduce as closely as possible the results measured in tests. The result of this process is almost
inevitably identified mass, stiffness and damping matrices that are fully populated, that is, which
have nonzero values for almost all elements. Such matrices, while capable of producing plausible
eigenvalues and eigenvectors, can nonetheless be physically implausible in the sense that the large
numbers of nonzero elements throughout the system matrices implies direct connectivity among the
degrees of freedom that does not exist physically.

Identified mathematical models that are based on physically implausible system matrices may
be quite acceptable if the objective of the study is to develop a simulation model. However, such
results for analysis purposes are generally unsatisfactory because it is difficult or impossible to
relate specific features of the physical system to the analysis results. This problem is particularly
troublesome when the objective of the identification of a system model from experimental
measurements is an accurate system model that, in turn, will be used to make modifications to or
improvements in the original physical system. Such an example might be the modification of an
existing aircraft structure to accommodate a new mission. In this case it would be desirable to
formulate a structural model for the present structure, verify its accuracy against experimental
measurements, and then use it as the basis for the modifications. When the verification process
yields identified system matrices that are mathematically acceptable but physically implausible, the
resulting model may be useless as the basis for future structural modifications.

The objective of the present work was to develop a method for identifying physically plausible
finite element system models of airframe structures from test data. The assumed models were
based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of
the identified system matrices was insured by restricting the identification process to designated
physical parameters only and not simply to the elements of the system matrices themselves. For
example, in a large finite element model the identified parameters might be restricted to the moduli
for each of the different materials used in the structure. In the case of damping, a restricted set of
damping values might be assigned to finite elements based on the material type and on the
fabrication processes used. In this case, different damping values might be associated with
riveted, bolted and bonded elements.

The method itself is developed first, and several approaches are outlined for computing the
identified parameter values. The method is applied first to a simple structure for which the
"measured" response is actually synthesized from an assumed model. Both stiffness and damping
parameter values are accurately identified. The true test, however, is the application to a full-scale
airframe structure. In this case, a NASTRAN model and actual measured modal parameters
formed the basis for the identification of a restricted set of physically plausible stiffness and
damping parameters.

Revie revi rtinen r

Airframes are generally modelled using powerful finite element analysis packages such as
NASTRAN that are capable of representing quite detailed aspects of the structural system. The
accuracy of such models is determined by comparing the analytical results with flight or ground
vibration test results. In the case of helicopter airframes, several recent efforts have focused on the
correlation of NASTRAN model data with ground vibration test datal-3. The conclusions reached
in these studies suggest that in cases where there is some degree of correlation, the model
frequencies compare favorably with test frequencies, but generally only in the low frequency range
below about 15 Hz 1-2. The frequency response functions at selected locations also compare
reasonably well in this range. Outside this range the comparisons are generally unsatisfactory, and
the eigenvectors do not usually compare favorably in either range.

Although there have been numerous contributions to the literature in the area of the
identification of structural dynamic systems#25, the majority of reported methods are based on
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simply adjusting the elements of one or more of the K, M, and C matrices. While this approach is
capable of yielding a system matrix whose eigenvalues and eigenvectors suitably match measured
results, the methods generally lose all physical interpretability inherent in the original K, M and C
matrices by not maintaining relationships among elements dictated by the model topology. These
difficulties are compounded for large-scale models with thousands of degrees of freedom.

The reported papers, that address this problem are by Meirovitch and Norris25-27, Lim 28-30,
Hajela 31, Zimmerman 32, Hickman33 et.al. and Chen and Garba 33. In reference 25, the problem
of parameter identification in distributed parameter system has been addressed. It is assumed that
the response of a structure is measured and the physical parameters of the system are identified by
using least square principle. In reference 26, a perturbation technique has been discussed for
parameter identification. As a basis for the perturbation procedure, it has been assumed that there is
a prior knowledge of approximate values of system parameters. The developed perturbation
technique depends on measured system response to a harmonic excitation in a frequency domain.
Again, the identification is based on least square principle. In reference 27, the method has been
extended to a Raleigh-Ritz type of method where the parameters have been assumed to be known
functions with undetermined coefficients. The developed theory considers linear viscous damping.
However, the numerical examples do not include damping and are based on simulated
measurements that have been obtained by numerical methods. Lim has used a submatrix approach
to update stiffness matrices in reference 27. In reference 28, both stiffness and mass matrices have
been updated simultaneously. In reference 27 and 28, Lim has attempted to retain the physical
significance of the stiffness and mass matrices by use of sub-matrices that represent the stiffness or
mass matrices of individual or group of elements. In reference 29, Lim has used a method that is
similar to that of references 27 and 28 to identify damages to structures. In all these works, Lim
has considered undamped system matrices and has used numerically simulated eigen values and
eigen vectors to validate the theory. In references 31-33, the identified physical parameters are the
structural failures. These failures have been related to changes in stiffness matrices. The algorithm
is based on partial inverses and optimum least squares expansion. Damages are identified only by
observation of global changes in properties. Quantities such as parameter sensitivity or parameter
perturbations or methods such as singular value decomposition or constraints to limit parameters to
physical space have not been used. Also, these methods have not been applied to large scale
system matrices. In reference 32, however, a pattern recognition technique has been used on the
basis of measured response of the structure.

In our work, we would like to considet measured frequencies and modes as inputs to identify
system parameters that can be related to physical variables. Our objective is to identify large scale
systems like helicopters that have been specified by a known finite element model. Because of the
sensitivity of errors in experimentally determined modes to system parameters, it is also necessary
to impose constraints on identified parameters to occupy specified parameter space. For example,
we can not have a negative modulus or a negative damping in a passive structural dynamic system.
In using measured data, we found that the identification process needed the use of singular value
decomposition methods. Because we are using experimentally generated data, the examples
include general linear damping matrices. No restriction of proportional damping has been
imposed.

Kuo and Wada35 used nonlinear sensitivity coefficients (NSC) in the identification procedure.
Their sensitivity coefficients are between the system parameters and eigenvalues. In the present
work the interest is in the change of system matrices as a function of physical variables of the
structure. A different type of sensitivity coefficient between system matrices and physical variables
has therefore been developed.

The most significant achievement in the present work40 is to preserve the physical
interpretability of the M, C, K matrices so that the identification can provide evidence of possible
sources of erroneous modeling and point to specific regions of the model that are unduly sensitive
and need additional consideration in modeling. The identification procedure developed in this paper
is capable of adjusting physical quantities such as boundary conditions, moments of inertia,
stiffnesses, damping or other selected physical parameters.

Mathematical Model



Basic_Equations

Any linearly elastic structural system with n discrete degrees of freedom and with general
viscous damping (either proportional or nonproportional) can be represented by n coupled ordinary
differential equations that can be written in the following form37:

Mg ()+Cq()+Kq()=Q() (D
where M, C, and K are symmetric n x n inertia, damping, and stiffness matrices, respectively. In
this formulation, q(t) are the displacements at the n degrees of freedom and Q(t) are the n
independent forces applied at each degree of freedom.

In the case of undamped or proportionally damped systems, there are n complex conjugate
pairs of eigenvalues and n distinct modes which are orthogonal with respect to M and K. Using a
transformation matrix of the form:

q(®O=n®
will allow decomposition of the original system equations (Eq. 1) into n decoupled equations that
are straightforward to solve.
This transformation cannot be applied to the general nonproportionally damped problem in the
same manner because for this case there are 2n complex modes, @@, and consequently 2n modal

coordinates, 1,(t), but there are only n physical coordinates, q;(t).
One can overcome this difficulty by writing Eq. (1) as a set of 2n ordinary differential
equations in the form:

0 Mirq -M 0 .
[M C]{ggg}*{o K]{ggg}={Qo(t)}' @)
If one then defines: y(t)={ 38 } and Y(t)={ &t) } , the above equations can be written as a set
of 2n first order ordinary differential equations:
0 M1, -M 0
[ ¢ o ¢ po=vo. ®

This formulation has the advantage that the modes obtained from the solution of the homogeneous
equations, obtained by letting Y(t)=0 in Egs. (3), are orthogonal, and hence can be used in
conjunction with the expansion theorem to obtain the solution of the nonhomogeneous problem.
The solution of the homogeneous equations is obtained by assuming as before a solution in the
form:

y(O)=Gest ()

where @ represents the spatial component of the solution and is a vector consisting of 2n constant
elements. The corresponding eigenvalue problem can be written as:

we Lo xJo-10) ®

The solution of the eigenvalue problem yields 2n eigenvalues, 04, and 2n eigenvectors

@ = {“;q’f} r=1,2,..2n. ©)

r
Equations (5) and (6) provide the solution to Eg. (1), but in order to simplify the computational

work, it is convenient to formally separate these complex equations into real and imaginary pairs.

Following the approach introduced by Chenglo, the real and imaginary components of the
eigenvalues and eigenvectors are defined, respectively, as:

A=+
@ =0 +®y, (7



and in addition the following modal matrices are defined:

Z1 = Re(x161), Im(a191), Re(0i262), Im(a242), ..
Re(ondn), Im(andn)) ®
Z7 = (Re(91), Im(¢1), Re(92), Im(¢2), -..

Re(9n), Im(¢n))
Then the new system equation, Eq. (5), can now be rewritten with purely real terms in the form:

we HaHe «J{z)-{o) 2

where the eigenvector matrix, A, is a block diagonal matrix with blocks

A,{ S erl (10)
0 8,

along the diagonal and zeros elsewhere. Equation (9) can be further simplified by the introduction
of U, V, and W as follows:

MU+CV+KW=0 (11)
where U = Z1A, V = Z2A and W = Z3 or explicitly:

U = Re( 201), Im(c; 201), Re(022¢2), Im(022¢),
.. Re(0g2¢n), Im(0t2¢n))
V= (Re(a; ¢1), Im(a1 1), Re(02¢2), Im(az¢2), ..
Re(0tnn), Im(0tadn))
W = (Re(¢1), Im(¢1), Re(¢2), Im(92), ... Re(@s),
Im(¢n)) (12)
Finally, Eq. (11) can be separated into explicit real and imaginary equations in the form of the
following two equations.
MURg+CVg+KWg=0 (13)

MU+CV+KW=0 (14)
These equations are same as Egs. (5), but they do not include complex variables. For the
identification procedure, it is much easier to use these equations than to use Egs. (5) directly.

ntificati

To begin, suppose that the mass, damping and stiffness matrices for the initial analytical model
are given by M C, and K, respectively, and the identified mass, damping and stiffness matrices
are given by M, C and K. In a similar manner, the eigenvectors and eigenvalues for the analytical
model are given by U,, V, and W , while Ug, Vg and Wg are the eigenvectors and eigenvalues
determined from test data. From these definitions it follows that the relationship between the
identified model (based on the test data) and the analytical model can be written as:

M=M,+dM, C=C,+dC, K=K,+dK (15)

Up=U,+dU, Vg=V,+dV, Wg=W,+dW (16)
where dM, dC, dK, dU, dV and dW are the changes. The identified model satisfies equations
(13) and (14), so substituting equations (15) and (16) into equation (13) and (14), yields:



dURTM A"’dVRTC A+dWRTK A=

~(UgrT,VEr T, WEr T)(dM,AC,dK)T 17
-(UgT,VeT, W D(dM,dC.dK) T 18)

These equations can be combined into the following form:

UgrT VerT Wer?T dM Y,
L Tc1(:=Y}, (19)
Ug' V' Wg' JUdK 2
where
Y;=-(dUR™ ,+dVRTC, +dWRTK )
(20)

Y2=-(dUT™™ ,+dV[TC A +dW1TK y).
The right side of these equations is known, since MA, CA, and KA are given by the analytical
model and dURT, dVRT, dWRT, dU;¥, dV{T, and dW¥, which are the differences of the
eigenvalues and eigenvectors between the analytical model and the experimental data, are known.
Finally, the matrix

UgrT VerT WerT
UEIT VEIT WEIT

contains only experiment data.

The solution to these equations are the changes of dM, dC and dK. Because of matrix
symmetry, the number of unknowns in Eq. (19) is 3 n(n+1)/2. The number of equations depends
on the number of known experimental modes. Suppose this number is m, then the number of
equations are m x n. If the number of the equations is larger than or equal to the number of
unknowns and the rank of this matrix is equal to 3 n(n +1)/2, normal least square methods can be
used to solve these equations. Otherwise, singular value decomposition, or constrained
optimization can be used to solve Eq. (19) for the changes dM, dC and dK, and these results can
then be substituted into Eq. (15) to determine the identified M, C and K matrices. It should be
noted that this approach is capable of handling nonproportional damping and underdetermined
problems in which fewer modes are measured than are computed from the analytical model.

At this stage the usual identification procedure can be performed. The values of M, Cand K
can be put into the system equation, Eq. (1), and the experimental data can then be reproduced.
However the identified M, C and K cannot be related to particular physical quantities in the actual
airframe, because the changes occur throughout the entire M, C and K matrices . In order to
preserve the physical interpretability of the identified system, it is necessary to develop a
relationship between dM, dC and dK and adjustable physical quantities such as boundary
conditions, moments of inertia, stiffnesses or other selected physical parameters. To this end,
assume that each of the system matrices can be decomposed into the form:

Nm Nc Nk
M=21, ma;, C=21,ciﬁi, and K=;km 1)
1= 1= 1=

where o, B; and ; are adjustable physical quantities and m;, ¢; and k; are grouped element
matrices with common physical quantities.

For example, in the finite element model of actual airframe, there is an ej-th element, (see Fig.
1). The portion of the stiffness matrix that describes bending in the xz plane of an element,
assumed to be a principal plane (Fig. 2), in NASTRAN, is given by



Fig. 2. Degrees of Freedom for Bending in the xz Plane

rFiy [Rr --;—R R -—;—R 0 ovd Y
2 2
Mz 1__R+g1 .I_R I_R_EIX 0z
4 1 22 1
Fzi+1 sym R 3R uzi+1
12_ EI
\Mzi+17 L R ] V0zis1/
where R = —l——+—l3—— 1 If the modulus of elasticity, E, is taken here as an adjustable
kzAG 12Ely) - ¥ B .

physical quantity, Yk, then



R -fR -R -fR
2 2
4 I 2 2 1
Kej = 1
R §R
12_ EI
| sym TR+_—IX _
— 1 |
r A 1
2 1 2 1
2 b Bl
= R F R 31 @3)
r . il’
2
| sym lzﬁ-!lx i

2(1+w)1 13 )1 :
where yk=E and r = A + Ly | - Suppose there are n elements which have the same E

so that it is possible to express the stiffness as:

kk = Zkej

CJ—
When the modulus changes from E to E+dE, the corresponding change in Yk is to Yk+dvk.

Considering all different ¥k, K changes from K to K+dK where
Nk

dK= Y kydy
k=1

Similar procedures can be generalized to include the damping, other stiffness parameters, and
mass.

dM—E—da,—Zm,da,

dC= —dBl- cidp; (24)
Z 3

i=1

dK-Z—-—d'yl-Zk dy;

Substituting these into Eq. (19) ylelds a set of linear algebra equations with unknowns doy, df;
and dy;:



 dap )

doNm,
UrTM  vgTC  wepreK 7| 9B
ou} dp1 a1 I >{Y1} 25
ut™M g€ wmrek ] [T

dy1

Ld‘YNkJ

The number of unknowns in this equation is much less than the number of unknowns in Eq. (19),
and also all the unknowns in this equation have physical meaning in the real structure.

However, neither Eq. (19) or Eq. (25) can be solved directly since the numbers of unknowns
and equations are not equal in most of the cases. There exists a number of techniques for dealing
with sets of equations that are under or ovér-determined or with matrices that are either singular or
else poorly conditioned. The singular value decomposition, or SVD method3$, is one of the most
powerful ways to handle these problems. In the present study it was employed to compute
solutions to Eq's. (19) and (25) which are highly under-determined for most practical situations.
In this case the SVD method provides a least square type of solution to the problem.

In most cases, the selected physical parameters must also be restricted to positive values in
order to make sense physically. However, the identification procedure outlined above cannot
guarantee that the identified values will all be positive. This is of particular concern when the
parameters are proportional to mass, an elastic modulus or a damping coefficient, all of which must
be positive for the systems typically considered. Using a constrained optimization method, this
problem can be eliminated. The present problem can be posed as one of minimizing

f=da1+da2+--+daNm+dB1+..+d|3Nc+d71+..+d7Nk (26)
subject to the constraints

4 dal '
doNg,
URTaﬂ...VR E—WR'FE(— dp1
da] aB1 o)L 1}
) 1Y
LUITB—M—...VIT—ag...WITQE...J . 2
oa] op1 a1 dBN,
dy1
L d’YNk y

and



do; 20, day 20, ..d(X.NmZO, dﬁle,..dBNcZO, dy; 20, ..d'YNkZO

The feasible solution (doy, dotg, ..., dON dBi, ---» dBN, dY1s s DN i) to this problem yields
the identified selected physical parameters.
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APPLICATIONS

m_Identificati r r

The method described above was applied to several practical examples. For these cases, the
analytical finite element model for the structures was assumed correct and was developed using the
NASTRAN finite element analysis package38. Then, values for selected physical parameters in the
model were identified on the basis of measured experimental data (eigenvalues and eigenvectors)
so that the analytical model more accurately represented the real structure. The assumption for this
procedure was that the identification process could be applied in an iterative fashion by making
successive small modifications to the selected physical parameters until satisfactory agreement with
experimental results was obtained. For the i-th iteration, there are the following relationships:

Mi = Mi-1 + dM, Ci = C-1 4+ dC, Ki = Ki-l +dK

Ul = Uil 4 du, vi=virl + gv, wi= Wi-1 +dW, Q7
Substitute these into equation (25), we can obtain

r dali N
doN !
i-1 i-1 i-1 i
URTaM ...VRTaC ...WRTa—K—... dps ,
du] af1 oY1 '
Mi-1 ci-1 g1 | h{:({;'} @8
|.U1'Ia ... VI ...W'Ia J -
oo] af1 a1 dBN!
dy
t dYNkl J
where
' T. . T .. T, .
Y1 = -(dUgMi-l +dVpCi-l + dWgKi-1)
Y2 =(@UTMi-1 +av] G-l + aWKi-1) 29)

The convergence criteria was formulated as follows:

(1) Check the physical parameter differences dai, da2, .., doNm, dB1, .., dBNc, d¥1, .., d¥YNk
either manually or programmatically. If these physical parameter differences are smaller than a
tolerance value, the identified physical parameters are obtained.

(2) Check the differences of the experimental eigenvalues and the i-th iteration analytical results
which are obtained after running NASTRAN. If the differences are smaller than a tolerance
value, the identified system is obtained.

Simple Numerical Example

In order to verify the proposed approach, the identification procedure developed above was
applied first to a very simple finite element model with only a few degrees of freedom. Itisa
simple variable cross section straight rod with fixed ends, and it contains all the desired parameters
1o be identified such as mass, stiffness and damping. It was modeled using 9 rod elements with
lumped masses at each node as shown in Fig. 3, and representative values were assumed for all
elements and mass properties. For the purpose of defining the damping, the elements were

segregated into 4 groups and a different damping coefficient was specified for each group.

11



Figure 3. Simple Numerical Example

The assumed physical properties were defined to be typical of an aluminum rod. The length
was 228.6 mm (9") and the modulus E =68.9 GPa (10e6 psi). The concentrated masses at each
node were those given in Table 1. This model was then employed to generate eigenvalues and
eigenvectors which were used to represent “measured” test results. In all the cases presented in
this report, the calculations were done in US customary units and the results converted to SI units.
As a result, some of the percentage figures may be slightly in error due to numerical roundoff in
the conversion of units.

TABLE 1.
ASSUMED PHYSICAL PROPERTIES FOR SIMPLE NUMERICAL EXAMPLE

Index | Massat | Element Element

Node | Stiffness | Damping
kg) (MN/m) | Coefficient

(kN s/m)

21.89 367.7 28.34
22.76 369.5 28.34

23.64 371.3 28.34

24.51 373.0 27.58

25.39 374.8 27.58

26.26 376.5 27.14

27.14 378.3 27.14

28.01 380.0 26.27

28.89 381.8 26.27
29.76

E\DOO\JO\U\AQ)N;—n

The objective of the identification was to determine the physical parameters such as damping

constants (c or {) and the cross section area for each rod element. There are three different cases to
start to consider with this system. In the first case, the mass and the stiffness matrices were
assumed to be accurate, and four damping parameters were identified assuming zero as initial
analytical values of the damping matrix. The identified damping parameters are listed in Table 2.

12



TABLE 2.
CASE I: IDENTIFYING THE DAMPING PARAMETERS

Damping| Exact Inital |Identified | Error

Parameter| Value Value Value (%)
cl 28.34 0. 28.3420 }0.0029
c2 28.34 0. .3420 }0.0029
c3 28.34 0. 28.3420 }0.0029
c4 ~271.58 0. 27.5805 £0.0022
c5 27.58 0. [ 27.5805 }0.0022
c6 27.14 0. 27.1431 }0.0006
c7 27.14 0. [ 27.1431 [0.0006
c8 26.27 0. 26.2676 }0.0005
c9 2627 | 0. [26.2676 }0.0005

The second case was to identify the stiffness parameters assuming accurate values of mass and
damping parameters which were the same for all elements kj = 376.5 MN/m. The identified
stiffness parameters are listed below.

TABLE 3.
CASE II: IDENTIFYING STIFFNESS PARAMETERS

Suffness| Exact Initial | Identified | Error
Parameter] (MN/m) |(MN/m)| (MN/m) | (%)
k1 367.7 376.5 367.7 [0.0000

k2 369.5 | 376.5 | 369.5 }0.0005
k3 371.3 | 3765 | 371.3 [0.0000
k4 373.0 | 3765 | 373.0 [0.0000
ks 374.8 | 376.5 | 374.8 [0.0000
ke 3765 | 3765 | 376.5 10.0000
k7 378.3 | 376.5 | 378.3 ]0.0000
kg 380.0 | 376.5 | 380.0 [0.0000
k9 381.8 | 3765 | 331.8 [0.0000

In the third case, both the damping and the stiffness parameters were identified under the
assumption of accurate mass value alone. The elements of the initial damping matrix were assumed
to be zero, and the stiffness parameters were assumed to be the same for all elements (kj=376.5
MN/m). The identified damping and stiffness parameters are listed in Tables 4 and 3.
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TABLE 4.
CASE III(A): DAMPING PARAMETERS

Damping [ Exact Inital |Identified | Error
Parameter| (%)
cl 28.34 0. ~28.34 [0.0000
c2 28.34 0. 28.34 10.0000
c3 28.34 0. 28.34 [0.0000
c4 27.58 0. 27.5812 |0.0004
c5 27.58 0. 27.5812 0.0004
c6 27.14 0. 27.1437 |0.0015
c7 27.14 0. 27.1437 |0.0015
c8 26.27 0. 6.2679 [0.0008
c9 26.27 0. 26.2679 [0.0008
TABLES.

CASE III(B): STIFFNESS PARAMETERS

Stiffness | Exact Inital | Identified | Error
Parameter| (MN/m |(MN/m)| (MN/m) (%)
k1 367.7 | 376.5 | 367.700 |0.0000
k2 369.5 | 376.5 | 369.492 [-0.0019
k3 371.3 | 376.5 | 371.285 | 0.0094
k4 ~373.0 | 376.5 | 373.044 | 0.0112
k5 374.8 | 376.5 | 374.763 | 0.0028
k6 376.5 | 376.5 | 376.521 | 0.0047
k7 378.3 | 376.5 | 378.290 | 0.0093
kg 380.0 | 376.5 | 379.964 |-0.0111
k9 381.8 | 376.5 | 381.908 [0.0394

All the results were obtained after only one iteration. For these simple cases the method
accurately identified the selected physical parameter values (damping and cross section areas).

lication H-

A NASTRAN finite element model (FEM) for the AH-1G helicopter airframe has existed for a
long time and was originally developed by Bell Helicopter Textron Inc. It is basically composed of
two parts, one is stiffness modeling for idealizing the structures and the other is weight modeling
for distributing weights to grid points. There are 4405 different elements with a total of 2764
degrees of freedom in the basic full model. A reduced model, based on Guyan reduction, contains
only a total of 63 physical degrees of freedom.

Normally, the input and output data files from NASTRAN dynamic analyses are specially
formatted and are quite large for a large finite element model such as the full AH-1G model. For
convenience and accuracy, the present system identification programs were designed to
automatically read NASTRAN output files and create NASTRAN input data deck files. At each
step in the iterative identification procedure, the new modified physical parameters were put into
the NASTRAN model bulk data in order to generate the required analytical results, such as
eigenvalues, eigenvectors and other parameters, for the next iteration.

The mass, stiffness and damping matrices defined with respect to the internal degrees of
freedom are not normal NASTRAN output data. However, such results can be developed by
using appropriate Direct Matrix Abstraction Programming (DMAP) utilities so that the identification
program can automatically get this NASTRAN output data (see Appendix B).
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1 ing_Simul

The NASTRAN model of an AH-1G airframe includes 4405 different elements with a total of
2764 degrees of freedom. In order to make sure that the identification procedure was appropriate
to a such big model, the use simulation has been chosen to begin with. For this identification, the
mass and stiffness properties of the analytical model were considered to be accurate, and
nonproportional damping properties were identified. The physical damping parameters were
associated with 8 distinctly different types of materials and structural fabrication techniques used in
the airframe (e.g., aluminum, steel, riveted, welded, bolted, etc.) and one of these damping values
was associated with each of the model elements using Eq. (11).

For this case, the test data were synthesized from the original NASTRAN model assuming
small values for the extension and rotation viscous damping coefficients (kN-s/m and N-s/rad
units):

TABLE 6. ASSUMED INITIAL PHYSICAL DAMPING VALUES

Extension Rotation
C1=5.253 C5=934
C>=38.756 | C6 = 155.7 |
C3=1.751 | C7=31.14
C4=1226 | Cg=21.80

The synthesized data included 24 modes of which 6 were rigid body modes, and the frequency
range was from 0.0 to 30.2 Hz. The dimension of the mass, stiffness and damping matrices was
2764 x 2764. The initial values of the physical damping parameters for the analytical NASTRAN
model were taken to be zero, and the results for the identified values are shown below:

TABLE 7. IDENTIFIED PHYSICAL DAMPING PARAMETERS

Parameter Initial Identified
Ci 5.253 5.429
C2 8.756 10.490
C3 1.751 1.746
C4 1.226 6.069
Cs 93.4 55.91
Ce 155.7 160.35
C7 31.14 65.96
Cs 21.80 55.91

The error in the identified damping paramete
each of the 8 damping types is shown in Fig.

rs as a function of the number of matrix elements for
4. The error for those element types with more than

100 elements present is quite low, but it is much larger for those types with only a few elements
present in the complete finite element model. The largest error was associated with what appeared
to be elastomeric materials.
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Fig. 4. Error in Damping Estimate as a Function of Number of Matrix Elements in Model

This simulation confirms the identification procedure for a complicated but yet well-defined
example. If the assumptions such as nonproportional damping are correct for the airframe and if
the experimental data are of high quality, the physical damping parameters can be identified from
the test data.

Actual AH-1G Data
Actual test data for an AH-1G airframe were provided by Bell Helicopter Textron Inc. based on

ground vibration tests and included both resonance dwell and FRF (frequency response function)
data. The experimental data were available for 8 different configurations of the AH-1G that were
tested. The principal difference between the tests concerned the degree of complexity of the actual
airframe tested. At one extreme, the bare airframe without most attachments was tested while at the
other extreme the complete airframe with all attached mechanical components was tested. The test
data from the most complex airframe configuration (with all difficult components present) showed
the poorest agreement with the corresponding analytical model, while the data from the simplest
test airframe showed the best agreement.

For this study, the test data from the most complex airframe configuration was used. Only the
FRF data were employed, and the complex eigenvalues and eigenvectors for some 7 triaxial modes
were obtained from the FRF data by using the TDAS® curvefitting program3. The experimental
data were provided as FRF's in TDAS universal file format, and the results generated by TDAS
were complex eigenvalues and eigenvectors.

Before use in the identification program, the eigenvectors were normalized. Two options were
used to normalize both experimental and analytical eigenvectors. One was to normalize the
eigenvectors to the same point, and the other was to normalize based on the minimum deviation
between the analytical and experimental eigenvectors.

The full finite element model for AH-IG airframe, as mentioned in the previous section, has a
total of 2764 degrees of freedom which is very large for the identification procedure. In order to
keep the problem tractable, a Guyan reduction was used in the present application to reduce the
analytical model to a total of 63 degrees of freedom, which corresponded to the 23 distinct
locations on the airframe at which experimental measurement were made. The error due to the
reduction in degrees of freedom from 2764 to 63 is shown in Table 8.

TABLE 8.
EIGENVALUES (FREQUENCY) (WITHOUT ANY DAMPING)

Test Full |Error (%)] Reduced | Error

Model _Model (%)
72475 7.6734 | 5.877 | 7.6932 | 6.150
8.0458 | 8.3467 | 3.740 | 8.4026 | 4.435
15.9539] 14.6722 -8.034 | 15.825 |-0.810
17.2174]17.3701 | 0.887 17.784 | 3.294
23.7396]20.7955 | -12.392 | 22.881 -3.606
24.6675] 25.7955 | 4.573 28.238 [14.475
32.6848]31.7526 | -2.852 | 33.786 | 3.369

Initially, both the full and the reduced models were used as analytical models. Using the actual
experimental data, the physical parameters in the analytical models were obtained using the
iterative procedure outlined earlier. The initial results for both the full model and the reduced
model included several negative identified damping parameters which were obtained using the
singular value decomposition method when either zero or positive initial guess values were
assumed for the analytical model. Physically of course, the damping parameters should be greater

® TDAS (Test Data Analysis) is a part of -IDEAS which is a computer-aided engineering product
of Structural Dynamical Research Corporation (SDRC).
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than zero, but mathematically, the identification procedure is oblivious to this constraint. The
constrained optimization procedure outlined earlier was therefore used in order to overcome this
problem. In addition, the reduced model was used in most of the identification cases, expect when
otherwise stated, because of the small error and big savings in computational time.

The complete system identification was carried out in two steps. The first step was to identify
the stiffness, and for this process the initial damping values were assumed to be zero. The second
step was to use the stiffness values obtained from the first step to identify the damping values.
This was done under the assumption that the greatest change in natural frequency can be obtained
by changing the stiffness parameter, while changes in the damping parameters will only fine-tune
the eigenvalues but will obtain accurate modal damping estimates for the structure.

At the first step, four stiffness parameters associated with elastic moduli for four principal
materials used in the airframe were selected to be identified. After two iterations, the differences
between the identified and the initial moduli and the analytical and experimental eigenvalues were
those shown in the following tables:

TABLE 9.
IDENTIFIED MODULUS VALUES

Tmtial | After | Change | After | Change
(GPa) | first |from initial| second |from initial
iteration | value (%) |iteration| value(%)
(GPa) (GPa) |
mat.-1| 22.1 21.7 -1.81 3.937 23.03
mat-2 | 72.4 | 72.5 0.19 9.417 | -10.41
mat.-3 | 200.0 [ 190.5 475 [28.435] -1.95
mat.-4 | 120.7 | 112.2 -7.01 19.396 | 10.83

TABLE 10.
IDENTIFIED EIGENVALUES (FREQUENCY)

Test | Onginal | Error | After | Error After Error
(%) first (%) second (%)
. _iteration _iteration
7247 | 7.693 | 6.15 | 7.686 | 6.05 7.426 2.47
8.046 | 8.403 | 4.43 | 8.394 | 4.33 8.064 0.22
15.95 15.82 | -0.81 | 15.795 | -0.99 | 15.302 | -4.09
17.22 17.78 | 3.29 | 17.762 | 3.16 | 17.180 | -0.22
23.74 | 22.88 | -3.61 | 22.899 | -3.53 [ 21.819 | -8.08
24.67 2824 | 145 | 28.195 | 143 | 27.544 11.6
32.68 | 33.79 | 3.37 | 33.805 | 3.43 | 32.481 | -0.62

As the second step, the damping parameters were identified for the previously identified
stiffness conditions. Initial estimates for the damping parameters were developed by assuming a
nominal damping ratio, {=5%. For the extensional elements, it was therefore assumed that the
initial viscous damping values would be cE=17.5 for all extensional viscous damping, and that for
the rotational elements (assuming the cross section area to be a circle) it would be cr=222 for all

rotational damping.
After one iteration, the results shown in Table 11 were obtained.
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TABLE 11.
FINAL RESULTS FOR AH-1G MODEL

Mode Test NASTRAN| NASTRAN (final)
(original)

on(Hz) | C(%) | on(Hz) | On(Hy) | §(%)
irst Lat Bending 7.247 2.19 7.693 7.425 3.00
irst Vert Bending 8.046 1.56 8.403 8.057 4.55
Second Lat Bending | 15.954 3.05 15.82 15.41 1.70
Second Vert Bending| 17.217 1.02 17.78 17.12 7.48
[Fuselage Torsion 23.731 | 170 22.88 21.83 0.24
ird Vert Bending 24.667 1.31 28.24 27.702 6.25
ird Lat Bending 32.685 1.95 33.74 32.498 0.97
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CONCLUSIONS AND RECOMMENDATIONS

A structural dynamic system identification procedure that is capable of identifying physical
parameter changes has been developed. The changes in physical parameters of the system can
therefore be related to observed experimental data. In the examples considered, physical
parameters, such as the damping constant of a material that will result in a nonproportionally
damped system, the modulus of elasticity of a material, and the dynamic stiffness of a beam
element have been identified by using the experimentally obtained frequency response functions,
modes and eigenvalues.

Following the validation of the developed procedures by using synthesized data on a small
mode], the method was applied to a large-scale NASTRAN finite element model of a helicopter
airframe. Both synthesized data and observed experimentally identified modal data were used.
Again, modulus of elasticity, stiffness and damping constants were the parameters considered for
the four representative materials used in the airframe. With the exception of one material that had
been used to construct a very small number of components, other material constants were identified
reasonably accurately where synthesized data were used. When experimental modal data were
used, the modal parameters calculated from the identified model did not yield the experimentally
observed modes only in cases where the initial a priori finite element model output and the
experimental model output differed considerably. When experimental output and the a priori model
output were reasonably close, the results of the identification were satisfactory.

Even though the method was shown to work and the difference between the identified model
and the experimental observations were considered satisfactory in some cases, there are some other
cases that need improvement to make the procedure applicable to a structural dynamic design
process:

(1) While the numerical processes were improved and refined, no similar improvements in the
quality of the test data could be realized. One result of this problem was that it was relatively
difficult to match measured eigenvalues and eigenvectors with corresponding analytical
values. Quite often, the measured and initial eigenvalues matched closely while the
eigenvectors differed considerably, and the identified eigenvectors were not significantly
closer in agreement. For this reason it is necessary t0 consider other experimental data, such
as the AH-1G dwell data, which have been acquired by other means.

(2) In cases where selected portions of experimental data and a priori analytical data differ
significantly while a large amount of experimental and analytical data are close together, it is
necessary to minimize first the large errors by using H.. type of identification before using the
least square analysis with singular value decomposition.

(3) Itis important that a larger group of identifiable parameters be considered.

(4) Itis necessary that we examine the convergence and accuracy of the complete process.

(5) We have used linear sensitivity coefficients. Accuracy and convergence may require nonlinear
sensitivity coefficients.

(6) The real damping in a structural dynamic system may not be linear viscous damping with a
nonproportional behavior. It is necessary to include other types of damping mechanisms.

(7) As pointed out by Bell's DAMVIBS conclusions!, nonlinearity is important in considering
selected components of the airframe.

(8) We should also examine the experimental parameter estimation processes used to determine
modal parameters used as inputs to the identification process.
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APPENDIX A
SYSTEM IDENTIFICATION PROGRAM LISTING

The following pages contain a listing of the current version of the program used to carry out the
structural system identification described in this report. The program is written in the CDC version
of Fortran 77 and was run on a CDC Cyber 180-990 running under the NOS/VE operating system.
The program requires the use of the IMSL Scientific Library (Version 11) in order to carry out the
singular value decomposition and the constrained optimization procedures.

The program was used with Version 66C of MSC/NASTRAN which was also run on the same
computer system and was used to solve the structural dynamic eigenvalue problems.
MSC/NASTRAN was used to run the initial eigenvalue problem and all subsequent iterative
solutions. As a result, the program listing also includes the necessary I/O calls needed to operate
directly with MSC/NASTRAN input and output data files. The program also requires the
experimentally determined eigenvalues and eigenvectors to be present is separate input files for
each eigenvalue.

A. Summary of Parameters Used by the Program

Parameter Dimension  Definition
LAMBDR, LAMBDI MD real and imaginary parts of analytical eigenvalues Az
LAMBDTR, LAMBDTI MD real and imaginary parts of test eigenvalues A

WAR, WAI NDxMD real and imaginary parts of analytical eigenvectors W

WTR, WTI NDxMD real and imaginary parts of test eigenvectors W

VTR, VTI NDxMD real and imaginary parts of VA

DUR, DUI NDxMD real and imaginary parts of U-Up

DVR, DVI NDxMD real and imaginary parts of V-V

DWR, DWI NDxMD - real and imaginary parts of W-Wa

MASS NV mass matrix

STIFF NV stiffness matrix

DAMP NV damping matrix

DC, Dk NV cj matrix

DK NV . k; matrix

COEFF NMxID coefficient matrix

Y NM vector of the right hand side of the equations

WK ID2 work vector

BETA ID damping parameters

GAMMA ID stiffness parameters

MODES 22x2 test eigenvector

NTESTk (k=1,2,5) 20x4 test measurement location definitions

NT 7 numbers of test eigenvectors corresponding to the
eigenvectors of NASTRAN model

IRTYPE 12 vector indicating the type of constraints exclusive of simple
bounds, where IRTYPE(I)=0,1,2,3 indicates .EQ., .LE,,
.GE., and range constraints respectively

BL,BU 12 . vectors containing the lower and upper limits of the general
constraints

A 12x12 matrix containing the coefficients of the constraints



C 12
OBJ
XLB, XUB 12

XSOL, DSOL 12
ND

N

MD

NMODES

ID

NUNK

NNK

NNC

NMR

LP

vector containing the coefficients of the objective function
value of the objective function

vectors containing the lower and upper bounds on the
variables

vectors containing the primal and the dual solutions
order of the system, default = 63

order of the system, (input)

modes used in the identification, default = 25

modes used in the identification, (input)

number of physical parameters, default = 12

number of unknowns to be identified (input)

number of stiffness unknowns

number of damping unknowns

number of rigid body motion modes

" number of test modes

choice of solving techniques
LP=0, singular value decomposition
LP=1, constrained optimization

B. Definition of Input and Output Files

File Name
TESTI1, TEST2, TESTS

GUYAN_DAMP_FO06

GUYAN_KCOUT
GUYAN_ELECDAT

GUYAN_ELEKDAT

TEST_EIGENV], ..., TEST_EIGENV7

TEST_EIGENVAL

Definition

files containing 3 different test measurement location
definitions

NASTRAN output data file including analytical mass,
stiffness, damping matrices, eigenvalues and eigenvectors
output file including results

NASTRAN output data file including the grouped element
matrices ¢j

NASTRAN output data file including the grouped element
matrices k;

files containing the test eigenvectors

file containing the test eigenvalues



C. Program Organization

begin

Y

input N, NMODES, NMR, NMT, NNK, NNC

Y

initialize the mass, stiffness and
damping matrices

read in mass, stiffness and
damping matrices

read in analytical eigenvalues
and eigenvectors

normalize the analytical eigenvactors

Y

read in test eigenvalues and eigenvectors
and normalization

output normalized analytical and test eigenvectors

Y

compute dU, dV, dW

assembly cg%ciem matrix

call IMSL subroutine LSVDF, for call IMSL subroutine DLPRS, for
using singular decomposition using constrained optimization
technique to solve the equations methodto solve the equations

I ; |

Y

output the identified physical parameters

Y

stop




APPENDIX B

MSC/NASTRAN INPUT FOR FINAL
AH-1G SYSTEM IDENTIFICATION RUN

The following pages include the listings of the input file for the final MSC/NASTRAN runs
used to compute the structural eigenvalues and eigenvectors for the identified AH-1G structural

model.



APPENDIX C

MSC/NASTRAN OUTPUT FOR FINAL
AH-1G SYSTEM IDENTIFICATION RUN

The following pages include the listings of the output files from the final MSC/NASTRAN run
used to compute the structural eigenvalues and eigenvectors for the identified AH-1G structural
model.






Part 11

IDENTIFICATION OF DAMPING CONSTANTS OTHER THAN THE
VISCOUS DAMPING CONSTANTS



CHAPTER 1

Introduction

In this part of the work, damping other than viscous damping has been considered.
As a first step, nonlinear Coulomb damping has been studied. This method can also
be extended to consider structural damping. This identification procedure uses the
Hammerstein Feedback Model (HFM) , which represents the nonlinear dynamic sys-
tem, and Singular Value Decomposition (SVD) Method for estimating the parameters.
The identification of Coulomb damping constant of a Single Degree of Freedom (SDOF)
nonlinear dynamic system and the estimating the parameters of Multiple Degree of
Freedom (MDOF) nonlinear dynamic system have been illustrated in this report.

The identification of nonlinear dynamical system has received considerably amount
of attention. These identification procedures are based on various models of nonlinear
dynamical systems. Usually, a nonlinear system is represented by a set of nonlinear
differential or integral equations. In many practical applications, an input-output
approach of a nonlinear dynamical system is a means of describing a relationship
between the input and the output of the system in some straightforward way and is

considered to be more useful.

An approach for modeling a nonlinear dynamical system is by the use of Volterra Series

(1],2].
2(t) = /ot ha(r)ult — 7)dr
+ /0' /0' ho(ry, 72 )ult — 7 )ult — 72)dmdrs

t t t
+ ‘/(; /0 /0 hs(my, T2, T3)u(t — 71 )u(t — 72)
u(t — 73)dridradrs + - -+ (1.0.1)



The Volterra Series, Eq (1.0.1), is a functional series, It maps past inputs into the
present output. This means that many kernel values are required to estimate. Several
techniques have been presented [3],[4], [5]. Because we have to decide which terms of
Volterra Series are necessary for a given practical problem and to estimate many kernel

values, the procedure of identification is usually a difficult procedure.

Several other simple block-oriented input-output models for representing nonlinear
dynamical systems are as follows. [7].

e Simple Hammerstein Model.

e Generalized Hammerst‘ein Model.

e Simple Wiener Approach.

e Generalized Wiener Approach.

e Extended Wiener Approach.

o Simple Wiener-Hammerstein Approach.
o Generalized Wiener-Hammerstein Model.

o Extended Wiener-Hammerstein Model.

The block-oriented models have been widely used because of their simplicity.

In 1985, a nonlinear difference equation model NARMAX (Nonlinear Autoregres-
sive Moving Average Models with inputs) was presented by Leontaritis and Billings
[9],]10) . The NARMAX model is said to be an unified representation of a finitely
realizable nonlinear system. The finitely realizable nonlinear system in essence means
that the state space of the system can not be infinite dimensional. This model maps
the past inputs and outputs to current output. For the SISO (single input and single

output) nonlinear dynamical system with white noise, it can be denoted by [11]
z(k) = Flz(k = 1),...,z(k — ng),u(k — 1), ...,u(k — ny)] (1.0.2)

2



Where F(*)is an unknown nonlinear function. In general, it will be determined for a
given real sampled nonlinear system. Leontaritis and Billings proved that a nonlinear
discrete time invariant system can always be denoted by Eg.(1.0.2) in a region around
an equilibrium point, if the response function of system is finitely realizable and a

linearized model exists at the chosen equilibrium.

The NARMAX model is derived assuming zero initial state response, but it can be
carried over to the non-zero-initial-state cases. The response functions of a system are
different for different initial condition, but the input-output NARMAX model for the
system will always be the same within a region around an equilibrium point. Several
simple forms of the NARMAX model have been proposed for nonlinear dynamic system

identification, such as the Bilinear Model.[11},[12]
z(k) = ao+ Z a;x(k—1)+ Z bju(k — 7)
i=1 i=1
+ S ek - iulk ) (1.0.3)
=1 5=1

the fractional model.[11], [13],[14]

blz(k —1),---,

a’[x(k - l)a T

x(k_ T)au(k — 1)7"',u(k —7')]
z(k — r),u(k — 1), -, u(k — 7))

2(k)

(1.0.4)

Haber and Unbehauen [7] prefer the NARMAX model, because the NARMAX model

is parametric and has fewer parameters than the Volterra series.

In aerospace engineering applications, a nonlinear structural dynamical system is
usually described by a system of nonlinear differential equations. In SISO case , the

nonlinear differential equation of a system is of the form

T 4bt+cz+ f(z,z) = u(t) (1.0.5)



where f(*) is a nonlinear function of # ,z. If f(*) is represented by a polynomial

extension for simplicity, Eq.(1.0.5) becomes

4+ bi+cr+0x’+azz+..+

Boz? + B3® + ... = u(t) (1.0.6)

Every term in Eq.(1.0.6) has a distinct physical meaning. Identifying the parameters
of Eq.(1.0.6) are useful for dynamic analysis, structural dynamic design, control and
design modification. If the nonlinear structural dynamic system is modeled by using
Eq.(1.0.6), the problem of the identification of a system is to estimate the parameters
S b, ag, e By

Many techniques for estimating these parameters have been proposed. Hanagud,
Meyyappa and Craig (1985) [15] used the method of multiple scales to formulate a
procedure for identification of parameters of Eq.(1.0.6). Mook(1988) [16] used a model
error method to find the model error d(t) which represents the nonlinear terms of the
nonlinear dynamic system and then estimated the nonlinear parameters from d(t) by
using a least square method. Yun and Shinozuka [17] proposed an approach that is
based on two versions of Kalman filter for identifying the parameters. Ibanez [18]
used an approach for estimating parameters in which it is assumed that the system
response is dominated by a periodic response at the forcing frequency and an approx-
imate transfer function is constructed. Broersen [19] replaced nonlinear terms in the
equation by a series expansion for a system subjected to random excitation. Distefano
and Rath, Yun and Shinozuka [20] [21] described several methods of of identification
and applied nonlinear Kalman filtering techniques for estimation.

If a structural control is considered, an input- output approach of nonlinear struc-
tural dynamic system in time domain and its parameter identification is useful. For

this purpose, the Hammerstein Feedback Model (HFM) has been considered here.



CHAPTER II

Background: Hammerstein Operator and Hammerstein

Model

In 1924, P. Uryson investigated a nonlinear integral operator [24],[25] of the following

type.

A:z:(t):/‘;k[t,r,a:(f)]d'r
teQ (2.0.1)

where Q and Q* are two sets of finite Lebesque measures in a finite dimensional space.
te O, re, —o < z(t) < co. K[t,7,z(7)] is measurable and it satisfies the
Caratheodory condition. The Caratheodory condition is that for all z(7), it is jointly
measurable in the variables (¢,7) € 2* x Q and for all (¢,7) € Q" x {1, it is continuous

in z(7).

In 1930, A. Hammerstein studied the following integral equation:

:D(t)I‘/‘;I\’(t,T)f(T,z(T)]dT (2.0.2)

This kind of equation is known as Hammerstein equation.

Eq.(2.0.2) is a special form of the Uryson nonlinear integral operator :

/nKo(t,r)f[T,:c(r)]dT = Hz(t) (2.0.3)

This integral operator H is called Hammerstein integral operator. Hammerstein inte-

gral operator H can be denoted by the following form:

H = K.F (2.0.4)



where K, represents a linear integral operator with kernel Ko(t,7):
Koz(t) = /n Kolt, 7)z(r)dr (2.0.5)
and F represents the nonlinear superposition operator [25].
Fz(r) = flr,z(7)] (2.0.6)
Then Hammerstein equation Eq.(2.0.2) can be expressed by
z(t) = KoFz(t) (2.0.7)
and Hammerstein integral operator can be denoted in following form
Hz(t) = KoFz(t) (2.0.8)

Let L,,Lg, Ly express the sets of measurable function z(7) . They have the norms

separately as follows.

2 lla= [ 2(r) |7 dr® (2:09)
2 lla= 1 | 2(r) ["® dr)? (2.0.10)
2 =1/ [2(r) |7 e (2.0.11)

and Lg is the set of z(7) with norm
Il z lo= sup | z(r) | (2.0.12)

There are two theorems about Hammerstein operator H: [25]

Theorem 1: Let F be an operator acting from L, to L, (v > 0) and let Ay be a
continuous operator acting from L, to Ls. Then Hammerstein operator H = KoF
acts from L, to Lg and is continuous.

Theorem 2: Let F act from L, to Lo and let K be a regular operator acting from Lo
to Lz (8 > 0), then the Hammerstein operator H = KoJF acts from L, to Ls and is

continuous.



The theorems 1,2 are very useful. It permit one to construct the Hammerstein operator
if K¢ and F are known.

In 1966, K.S. Narendra and P.G. Gallman [6] suggested a Hammerstein Model for
identification of nonlinear dynamic system. They assumed that the response z(t) of

nonlinear dynamical system is

z(t) = Hu(t)
= KoFu(t) (2.0.13)

where u(t) is an input function. Then the Hammerstein Model suggested by Naren-
dra and Gallman consists of a nonmemory (independent from history) nonlinear gain

having a polynomial form followed by a linear discrete system. The nonlinear gain is

o(t) = Ful(t)

= cqu+cu’+-+cuf (2.0.14)
The linear discrete system has a response .
z(t) = /n Ko(t, 7)o(r)dr (2.0.15)

Narendra and Gallman used the following form to denote the linear system.

big7l 4+ bag"

—~ (2.0.16)
ao+a1g7t + - +ang"
where the ¢7!,.--,q™" are the time delay operators. They are defined as
2(k)g™" = a(k - 1)
z(k)g™" = z(k —n) (2.0.17)

This Hammerstein Model suggested by Narendra and Gallman is illustrated in Fig.2.1.
Hammerstein model provides a simple input-output model for identification of nonlin-

ear dynamical system. In the past years , Hammerstein model has been widely used
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u(k) x(k)

2
clu+c2u + blq_l+"‘+ bnq-“-

-1 -
‘‘‘‘‘‘ +c.uP a +a,q" +...+a,q n

Figure 2.1: The Hammerstein Model

in various fields.

Neil, Francis and Rein [26] presented a simple iterative technique for estimating param-
eters in a2 Hammerstein model for a case where noise in the output data is correlated.
They suggested a Hammerstein model with noise . The noise is modeled by the fol-

lowing transfer form .
1

T 14ttt

(2.0.18)

H(q)

The expected value of noise d(j) equals to zero. The parameters are estimated by an
iterative method.

Greblick and Pawlak [27] used a correlation method for Hammerstein system identifi-
cation by using non-parametric regression estimation. Shih and Kung (30}, 31] used
shifted Legendre and Chebyshev expansions for identification of the nonlinear dynamic

svstem described by a Hammerstein model. The input and output are expressed by

using a finite number of the shifted Legendre polynomials or of the shifted Chebyshev

8



polynomials. Substituting these into the Hammerstein model in a state variable form,
and integrating from 0 to t, then we reduce the nonlinear equations to a linear alge-
braic equation. The parameters are obtained from the linear algebraic equations.

Horng and Chou,[32], used shifted Jacobi series to express the input and output. Sub-
stituting the input and output into the Hammerstein model, then integrating the
model from 0 to t, a linear algebraic equation is obtained for identification of nonlin-
ear dynamical system. Chung and Sun,[33], used a Taylor’s series approximation for
Hammerstein model to estimate the parameters. Kung and Shih {34], and Jiang [35],
used the Block pulse function for identification of parameters of a nonlinear system

with Hanimerstein model etc.

Actually, the Hammerstein model suggested by Narendra and Gallman can be consid-
ered as a superposition of several linear system models. Their objective was primarilly
to consider onl.y nonlinearity in the forcing function u(t), however in a structural dy-
namic system, nonlinearities are from damping and stiffness terms, (or the plant model
). Therefore we will propose a feedback model which is named here as Hammerstein
Feedback Model (HFM) for identification of nonlinear feedback system for a nonlinear

structural dynamical system and identify the nonlinear plant parameters.
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CHAPTER III

HAMMERSTEIN FEEDBACK MODEL OF NONLINEAR
DYNAMIC SYSTEM

Consider a linear equation.

Lz = f(t) (3.0.1)

where {(t) is an almost periodic function ( ap-function). The ap-function is defined as:
A function z(t) € C(R) (C(R) denotes a continuous metric function space ) , which
has the translate

zn(t) = z(t+ h) (3.0.2)

where (—oo < t < 00) and (—oo < h < o0), is called as an ap-function, if its translates
form a compact set in C(R).

L is a regular ap-operator .

& -t
L=+ At

I W+"'+An(t) (3.0.3)

where A;(t) (i = 1,---,n) are ap-functions. There is at most one function G(t,7)
(—oo0 < t,7 < 00) , which is called to be the Green’s function, such that one can write

the solution of Eq.(3.0.1) as:
2(t) = [ G, M) f(r)dr (3.0.4)
Now consider the nonlinear equation.
Lr = f(t,z,z,u) (3.0.5)

where the function f(t,z,%,u) is jointly continuous for ¢, z and almost periodic in t .

It can be easily seen that the ap-function z(t) is a solution if and only if it is a solution



of the integral equation, called the Hammerstein integral equation.

2(t) = [ G(t,r)f[r=(r), &(7).u(r)ldr
= H(z,z,u,t)

(3.0.6)

The right side of Eq.(3.0.6) is known as Hammerstein integral operator, which can be

denoted by
H =K F

(3.0.7)

where K, represents a linear integral operator with Green’s function G of operator L,

and F represents a nonlinear superposition operator

Flz,z,u,t) = flz(t), 2(t), u(t), ]

Derivation of Hammerstein integral equation

For linear case, consider a linear dynamic system for instant.

z(t) = Az(t) + Bu(t)

where A and B are constants. The Laplace transform of Eq.(3.0.9) is

sz + z(0) = Az + Ba
l.e.
7 =[sI—A]"'z(0)+ [s] — A]'Ba

The response of system is

z(t) = ez (0) + _/t eA'e™4" Bu(r)dr

0

i.e.

(3.0.8)

(3.0.9)

(3.0.10)

(3.0.11)

(3.0.12)

(3.0.13)



If the initial condition is assumed as (0) = 0. For nonlinear case, consider a nonlinear
dynamic system

£(t) = Az(t) + fla(t), 2(t), u(t)] (3.0.14)

Initial condition: z(0) = 0. Construct a response for the nonlinear dynamic system,

which is denoted by Eq.(3.0.14).
z(t) = /: d4 e~ 4" flz(7), 2(7), u(r)]dr (3.0.15)

The derivative of Eq.(3.0.15) is

de?t [t
it) = — [ e * fla(r), é(r),u(r)ldr
+ e A flx(t), 2(t), u(t)] = Az(t) + flz, %, u] (3.0.16)

Eq.(3.0.15) is the Hammerstein integral equation, which is equivalent to the nonlinear
differential equation Eq.(3.0.14). Eq.(3.0.15) can be rewritten as

z(t) = H(z,z,u) (3.0.17)

where H is the Hammerstein integral operator. Since there are two theorems about
Harﬁmerstein operator H:

Theorem 1: Let F be an operator acting from space L, to space L, (5 > 0) and let
K, be a continuous operator acting from space L, to space Lg. Then Hammerstein
operator H = KoJF acts from space L, to space Lg and is continuous.

Theorem 2: Let F act from space L, to space Ly and let Ky be a regular operator
acting from space Lo to space Lg (8 > 0), then the Hammerstein operator H = K F

acts from space L, to space Lg and is continuous.

According to Hammerstein integral equation and theorems 1 and 2 of Hammer-
stein integral operator, a Hammerstein Feedback Model (HFM) can be constructed for
representing a nonlinear dynamic system. The HFM consists of nonlinear part. which
is expressed by a superposition operator F and contains the nonlinear terms of state

variables, followed by a linear system, which is denoted by linear integral operator

12



u(t)

nonlinear gain
F

linear system
Ko

X(t)

T

Figure 3.1: The Hammerstein Feedback Model (HFM)

K,. HFM is a simple block-oriented input-output model for identification of nonlinear

structural dynamic systems. It can be illustrated in Fig. 3.1.
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CHAPTER IV

IDENTIFICATION OF NONLINEAR STRUCTURAL
SINGLE DEGREE OF FREEDOM (SDOF) DYNAMIC
SYSTEM BY USING HFM

In chapter 3, the Hammerstein Feedback Model (HFM) of nonlinear dynamic sys-
tem has been proposed for identification of nonlinear dynamic systems. In this chap-
ter the HFM is used for identification of nonlinear structural single degree of freedom
(SDOF) dynamic system. The HFM in discrete time domain of SDOF nonlinear struc-
tural dynamic system has been derived. The Singular Value Decomposition Method
(SVDM) is used for estimating parameters of HFM of SDOF nonlinear structural dy-

namic system.

4.1 Hammerstein Feedback Model in Discrete Time Domain of SDOF

Nonlinear Dynamic System

For HFM, the response of nonlinear dynamic system is the convolution of a weighting
function i.e. Green’s function of linear dynamical system and a nonlinear function of
the input and the output of nonlinear dynamic system. The Z-transformation of a
sequence of function and its properties can be used for deriving the HFM in discrete

time domain.

Consider a sequence of function f(k) (f(k) = 0 for k = —1,—-2,.-.). The Z-



transform of f(k) is defined by

F(z)= Y f(k)="* (4.1.1)
k=0
and inverse Z-transform is
fk) = Z7H[F(z)] (4.1.2)

where z is an arbitrary complex number. The Z-transformation of a sequence of func-
tion f(k) has following properties:
Linearty:

If f(k)= afi(k) + bfa(k) for k = 0,1,2,---, where a, b are constants, then
F(Z)ZGF1(2)+bF2(Z) (4.13)

for | = |> max(R,, R;), where R;, R, denote radii of convergence for Fi(z), F2(z),
respectively.
Right-shifting Property:
Consider f(k) (f(k) = 0,fork=0,-1,-2,---)and y(k) = f(k—m)for k =0,1,2,--..
From the definition of Z-transformation, we have
Y(z) = ?,f(k—m):"‘

o om0 m) et f(-1)

| +f(0)z"™ 4 f(1)z"mH 4

= O+ f(1)zT 4]

= z "F(z2)

for |z |> R (4.1.4)

where R is the radius of convergence for the Z-transformation of f(k). Then the

Right-shifting property of Z-transformation can be denoted by the following form.

Z{f(k-m)]=:z""F(z) (4.1.5)
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Convolution-Summation Property:

Consider a convolution y(k) of two sequences h(k) and u(k)

y(k) = ih(i)u(k—i) (4.1.6)

1=0

The Z-transformation of y(k) is

h(i)u(k — i)]z7* (4.1.7)

8

Y(z) = ki[

-
1l
(=]

From the Right-shifting property, we have
Zlu(k — 1)) = =7'U(z) (4.1.8)
Eq.(4.1.7) can be represented as

Y(z) = Zh(i)z—ilf(z)
= H(z)U(z) (4.1.9)

If input sequence u(k) is kroneker § function,

u(k) = 8(k) . (4.1.10)

the Z-transformation of u(k) is
U(z) =1 (4.1.11)

In this case, Eq.(4.1.9) becomes
Y(z)= H(z) (4.1.12)

Eq.(4.1.12) denotes that response of any linear discrete system for Kronecker é input

is equal to the weighting sequence of the linear dynamic system.

The Hammerstein Feedback Model implys that a nonlinear dynamic system is as-
sumed as a linear system with a nonlinear input, which is a function of the input

and the output of nonlinear dynamic system. For a nonlinear dynamic system, if the

16



responses of system are known and steady, and if the parameters of system are time-

invariant and linear, the estimating parameters of system reduces to a linear problem.

Let us consider a SDOF linear dynamic system. This SDOF linear dynamic system

is represented in a differential equation with order n in general.

d"z(t) dz(t)

o T Qg + -+ anz(t)
d"u(t
= b u(t) )+ ceo o bu(t) (4.1.13)
dtr-?
with initial conditions: z(0), £(0), ---, du—‘;—f(,ﬂz. If the initial conditions are assumed
to be zero,
z(0)=0
#{(0) =0
dn—l
—e(0) =0 (4.1.14)

the response of linear dynamic system has the response of following form

z(t):/rzh(t—'r)u('r)dr (4.1.15)

In discrete time domain, the sequence of response of system is

P
z(k) = Z h(k)u(k — ) (4.1.16)
1=0
The transfer function of linear system in z-domain is
X(=)
H:) = —
® = 70
bzt 14 ...+ b,
- o Fed (4.1.17)
24 a2+ .+ an
The transfer function Eq.(4.1.17) can be rewritten as
bz~ 4. 4+ b,27"
H(z) 12t (4.1.18)

T l4azt 4t anzm

17



Consider a nonlinear superposition operator F. It is assumed in the form of a

polynomial expression for simplicity.

F [ :c(t),:'c(t),u(t),t]= 71u(t)+721'2(t)+

+ pprP(t) + g () + -+ ped(t) (4.1.19)

Since the function f(z,z,u,t), which is respect with the nonlinear superposition op-
erator, is a polynomial expression, it satisfies the Caratheodory condition. The z-

transform of Eq.(4.1.19) is

Z(y) = MmZ(u)+1nZ(®)+-+12(")
+ uaZ(2E) 4 oo+ poZ(29) (4.1.20)

According to Eq.(4.1.9), we can construct a Hammerstein Feedback Model in dicrete
time domain, which 1s

b]Z_l 4 o4 bnz—n
Z = 7
(T) 1+a]z_1-|—--.+an:..nhl (u)

+ 12Z(2%) + -+ 9pZ(2F)
+ p2Z(%) 4+ peZ(2?)] (4.1.21)

This HFM of SDOF nonlinear dynamic system in Z-domain is illustrated in Fig.4.1.
Eq.(4.1.21) can be rewritten as
Z(z) = —a1Z(z)z7 = —anZ(z)2" + by Z(u)z
4 bimeZ(z?)z e+ b Z(2®)z T+ bpa Z(2?): 7
4 e b Z(d9)z T 4 b Z(u)2 T
4 et bapZ(2%)" (4.1.22)
By using the Right-shifting Property of Z-transform, Eq.(4.1.22) yields

18



Z(u)
‘le(u) + ‘Yzz(xz) bz-l4. +b 2" Z2(x)
— 1 n -

a. +a,z  +..+a_z
+... +'ypz(xp) 0" 1 n

A

Figure 4.1: The HFM of SDOF nonlinear dynamic system in z-domain.

Ziz(k)] = —a1Z[z(k—1)] =+ — anZ[z(k — )]+ bnZ[u(k - 1)]
4 biyaZ[zi(k — 1))+ - - + b1 Z[2”(k — 1)] + b Z[2(k — 1))
4+ et by Z[2%(k — 1)) + - + ban Z[u(k — n))
4 oo bapg Z[#%(k — n)] (4.1.23)

Consider the inverse Z-transform, we have

z(k) = —ayz(k-1)—---=anz(k—n)
+ bmu(k — 1) + byyez’(k — 1)
+ oot byypeP(k = 1)+ bypad®(k = 1)
4 o+ bypulk — 1) + byyazi(k = n)
4 e byprP(k = n) + bapaz® (k= m)
4+ ot bapgr(k —n) (4.1.24)

Eq.(4.1.24) is the difference form of HFM in discrete time domain of SDOF nonlinear
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dynamic system. This HFM in discrete time domain, Eq.(4.1.24), is equivalent to

following nonlinear differential equation.

dalt) | dz(t)

o T e Tt eslt)
T f(t
b, dtn{g)_i_....{.bnf(t) (4.1.25)

where input f(t) is

(1) = mu(t)+nz’(E) + -

4+ 2pzP(t) + pa# () + - + pg(t) (4.1.26)

Observably, since the parameters of nonlinear differential equation, Eq.(4.1.25), are
indepedent from the initial conditions, the parameters of HFM in dicrete time domain,
Eq.(4.1.24), are independent from the initial conditions. This means that we can use
the input and output data under any initial conditions to identify the parameters of

HFM in discrete time domain of a nonlinear dynamic system.

4.2 The HFM of a Nonlinear Structural SDOF Dynamical System

A nonlinear structural SDOF dynamical system usually is expressed in the form of
i+br+cx+ f(z,z)=u (4.2.27)

where f(*) is a nonlinear function of z,z. It can be also approximately expressed by

F4+bt+cz+arz’+azi+---

+apz? + Boz’ + -+ + Byt = u (4.2.28)

In this case, the linear differential equation corresponding to Eq.(4.2.27) or Eq.(4.2.28)
1s

+bzr+cr=u (4.2.29)

20



with initial condition: z(0),z(0)

The transfer function of the linear system in z-domain 1is

X(z)
H(=
.2
= 4.2.30
1+ a1z + ayz~? ( )
The nonlinear input f(¢) in HFM is defined as
flt) = ult)+7ez’(t)+- +9%2"(t)
+ pp? 4o+ pg? (4.2.31)
The z-transform of nonlinear input f(t) is
Z(f) = Z(u)+mZ(")+ - +72(=F)
+ p2Z(2%) 4 e+ pgZ(27) (4.2.32)

Then we have the HFM of nonlinear structural SDOF dynamic system in z-domain.

2—2

1+ a1z +azz"?
+ 1Z(z’) + -+ 127
..I._

Z(x) [Z(u)

p2 Z(&2) + -+ + peZ(2%)] (4.2.33)

Eq.(4.2.33) can be rewritten as

Z(z) = —a1Z(z)z"t — a:2(z)z72 + Z(u)2"?
+ mZ(z?)P 4+ Z(2R)2T
4 paZ(22)z 4 pgZ(2%):7 (4.2.34)

By using the Right-shifting Property of 7 transform , we have the HFM of nonlinear

structural SDOF dynamic system in discrete time domain.

z(k) = —a1z(k — 1) — azz{k — 2) + u(k - 2)
+ asz?(k—2)+ -+ apz”(k —2)
+ apyazi(k—2) 4+ Gprgn T (k= 2) (4.2.35)
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where

as = 72
as =73
Apig+1 = Hg (4236)

The relationship between parameters of nonlinear differential equation and param-

eters of HFM are

¢ = (a1+az+1)/(At)

Qg = —03/(At)2
. Qz = —(L;/(At)z
Bo = —apia/(At)
By = _a’p+q+l/(At)2 (4.2.37)

4.3 Estimation of Parameters of Nonlinear Structural SDOF Dynamic Sys-

tem

When a nonlinear dynamical system is modeled by HFM in discrete time domain,
Eq.(4.1.24), and N + n samples of the input and the steady output from k—n to k+N
are substituted into Eq.(4.1.24), we have N equations. The set of equations can be

represented in matrix as the following form.
X = A0 (4.3.38)
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where

z(k)
x|kt (4.3.39)
| z(k+ N) |
[ —z(k-1) R u(k — 1)
4 | =® .—z(k—n—{-l) 'ft(k)
| —z(k+N-1) .- —z(k+N-n) wk+N-1)
(k- 1) .oo zP(k —n)
z%(k) oo zP(k—-n+1)
% k+ N-1) --- zP(k+ N—n)
#2(k — n) oo #(k-n) |
P2k — eer 2%k —n
:.t(k n+1) . ir(k +1) £.3.40)
e’ (k+N-n) --- 2%k+N—n) |
T
an
0= (4.3.41)
bim
| bept®

Solving the Eq.(4.3.38) we will obtain the parameter vector ©, which dominate the
nonlinear dynamical system.
For identification of nonlinear structural dynamic system, the structural HFM in dis-

crete time domain is considered. When N + n samples of input and output are taken,
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the Eq.(4.2.35) becomes the following form in matrix.

X =40 (4.3.42)
—z(k - 1) —z(k - 2) u(k — 2)
' ~z(k) —z(k—1) u(k—1)

22(k — 2) . 2Pk — 2)
z%(k — 1) zP(k — 1)
z?(k+ N-2) --- zP(k+ N -2)
2(k—-2) - #(k-2) |
22 (k — 1 v 29k =1
e (4.3.43)
i+ N—-2) - #9k+N-2) |
a, 1
a;
o= (4.3.44)
ap-1
| Qp+g+1 ]

A modeling error noise (k) usually is considered. This noise is assumed to be white.
In this case, Eq.(4.3.38) is
X=A0+e (4.3.45)

Estimating the parameter vector © from Eq.(4.3.45) is a standard least squares prob-
lem. The problem is to identify (estimate) the parameter vector © which minimizes

the || A® — X ||. There are several methods available for estimating parameters from
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Eq.(4.3.45). The basic method for estimating © is the least squares method. The

parameter vector can be estimated by
0 =(ATA)ATX (4.3.46)

Since matrix A of HFM has elements k=3t =1,2,.,p ] = 1,2,...,n), the

determinant of some submatrix of matrix A is the Vandermonde determinant.

[ 2ik—2) oo 2P(k-2) |
k-1 e 2Pk -1
| D G
| 2*(k+p-2) - z?(k+p—2)
= z¥k-2)---2*(k+p—2)
(1 e 2 k—2) |
1 .- 2P 3k-1)
det | . (4.3.47)
] 1 --- rp‘z(k+p—2) ]
The Vandermonde determinant has following value.
1 ... a,;'_l
det |t 1 = J] (ai-a;) (4.3.48)
. 1<5<i<n
1 - a"—l

n

if At is a very short time period, the difference between z(k — j) and z(k —j + 1) 1s
small value, then the value of determinant of maximum square submatrix of matrix A
is small. The matrix A becomes an ill-conditioned matrix. Any small round-off errors
in the elements of A can cause large changes in (ATA)™*. In this case, Eq.(4.3.46) is
not stable for identification of HFM.



4.4 Singular Value Decomposition Method

In this report, the Singular Value Decomposition (SVD) method has been used for
estimating the parameters of HFM. For an arbitrary matrix A (A € R™"), if there
a matrix B which lets AB, BA be a H matrix ( H matrix: m xn , m > n, and
rank(H) = n.) and

ABA=A (4.4.49)

BAB=B (4.4.50)

the matrix B is defined as a pseudo-inverse matrix A" of A .

There is a theorem of singular value decomposition (SVD) for an arbitrary matrix
A.

Theorem: if A € R™*" , there exist orthogonal matrices

U= [Ul,"',um]
UeR™™ (4.4.51)
and
V = [vi,---,vn]
V e ™" (4.4.52)
such that
UTAV = diag(sy,- -, $,) (4.4.53)

where s, > s > --- > 5, > 0. According to this theorem, any matrix 4 (m x n) with
rank r can be decomposed to

A=USVT (4.4.54)

where U(m x m), V(n x n) are orthogonal matrices. S is a m x n matrix with all

elements of which is equal to zero with the exception of the first r diagonal elements

§1 > 83228 >0 (4.4.55)
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We can construct a pseudo-inverse matrix A* of A as
At =vstuT (4.4.56)

where St is a n X m matrix and has all zero elements except the first r diagonal

elements. The nonzero elements of St are s7',s;',---,s7'. This A" satisfies the
definition of pseudo-inverse matrix.
A standard least squares problem is finding a vector ©,, € R" for equation A® = X

where A € R™*" and X € R™ and m > n, such that

min || AO — X

2 (4.4.57)

Here || A® — X

» is the p-norm (p = 2) of vector. It is defined as
| A® — X ||o= [(A® — X)T(4© — X)} (4.4.58)
Denote the minimum sum of squares by p?,

Pt =|l 4G, — X |I3 (4.4.59)

When a matrix 4 (m x n) is decomposed by using the orthogonal matrices U’ and V,

we have
|46 =X [} = | UTAV(VTO) - UTX |
= Z[s,-(VT@),- b 'uiTlr]z
=1
+ Y (@ixy (4.4.60)
i=r41

Observably, if © has the following form.

O, = zr:(u,-TX/si)v,- (4.4.61)

i=1

then the minimum of || 40 — X || is

m

ph= Y (Wix) (4.4.62)

t=r+1
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From Eq.(4.4.61) and Eq.(4.4.56), we obtain the solution of least squares problem.
0, =A%X (4.4.63)

where A* = VSTUT. Actually, if the rank of matrix A, r is equal to n, then A* can
be (ATA)'AT and the least squares solution @, is

0, = (ATA)'ATX (4.4.64)

In this report, the U, V and singular values s; of matrix A are calculated by using the
program of IMSL.

4.5 Numerical Examples

Several numerical examples have been presented by using HFM for identification of
nonlinear structural SDOF dynamic system in this section. The nonlinear structural
dynamic system are described by nonlinear differential equation. The response z(t) and
velocity z(t) are obtained by using Runge-Kutta Method. The estimated parameters

of nonlinear terms are compared with the real parameters.

Example 1:
The simplest case has been considered in this example. A nonlinear dynamic system

is assumed to have the following differential equation.
2.56z + 0.32z + = + 0.05z° = 2.5cost (4.5.65)
It is from Mook’s paper. In Mook’s paper, [16] a linear model is assumed as
2.56z + 0.32¢ + ¢ = 2.5cost (4.5.66)
The real nonlinear dynamic system can be represented as
2.56x + 0.321 + = = 2.5cost + d(t) (4.5.67)
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where d(t) is model error. The model error d(t) between nonlinear dynamic system
and assumed linear model is estimated by using Two Point Boundary Value Problem

(TPBVP) method. Then the model error is assumed to consist of two nonlinear terms.
d(t) = az’(t) + Bz*(t) (4.5.68)

The parameters a and 3 are estimated by the least squares method from the model

error d(k) in discrete time domain.

Since this is a nonlinear dynamic system with one order, the linear dynamic system

considered for constructing HFM has following transfer function in z-domain.

-1

-
~

H(z)= TTa (4.5.69)
The nonlinear input of HFM is assumed as
f(t) = 2.5cos(t) + 1222(t) + 73z (t) (4.5.70)
Then we can assume a HFM for the nonlinear dynamic system.
z(k) = —azz(k — 1) + apz®(k — 1) + agz®(k — 1) (4.5.71)

The response of system is obtained by Runge-Kutta method from Eq.(4.5.65). The
input and response are considered as data for identification of this nonlinear dynamic
system by using HFM.

Sampling period At is assumed to be 0.01. There are 628 samples taken in a period.
901 samples of input and output of system are used for forming the equation of least
squares problem. The parameters a;, a3, a3 are estimated by using SVD method. The

nonlinear estimated parameters a, S are obtained from equations:

a = 02/(At)2
B = as/(At)? (4.5.72)

They are compared with mook’s results in table 4.1.
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Real P. | Est. P. by Mook Est. P. by HFM
0 0.00001 0.00002
0.05 | 0.0492(error:1.6%) | 0.04995(error :0.09%)

Table 4.1: The estimated nonlinear parameters

Example 2:
A nonlinear SDOF structural dynamic system described by well-known Doffing’s

equation is considered for this example. The Duffing’s equation has the following form.
# + 0.225z + 0.0025z° = 0.02c0s0.5¢ (4.5.73)
The initial conditions are assumed as

z(0) = 4.0
#(0) = 0 (4.5.74)
The response z(t) of Eq.( 4.5.73) is calculated by using the Runge-Kutta method and

illustrated in Fig. 4.2.

The linear dynamic system considered fo HFM has the transfer function in 2z-

domain. i
Hz) = 17 al:‘:l — (4.5.75)
The nonlinear input of HFM is assumed as
£(t) = 0.02c080.5(t) + 722°(t) = 732°(t) (4.5.76)
The HFM of this system is assumed as
z(k) = —aiz(k —1) — aze(k = 2) = asz’(k = 2)
+ agri(k = 2)+0.02cos 0.50k — 2} (4.5.77)

902 samples of input and output of system are used for parameter estimation. The

sampling time period Af is assumed as At = 0.05. The parameters of HFM are
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Figure 4.2: The response of a SDOF nonlinear dynamic system
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Exact P. | Estimated P. | Error
0.0 0.000012
0.0025 0.0025030 0.12%

Table 4.2: The estimated nonlinear parameters
estimated by using SVD method.

a; = —1.999943

a; = 0.999995

as = 0.320225 x 107°

as = —0.625760 x 107° (4.5.78)
The parameters of nonlinear terms of nonlinear differential equation are obtained by
using Eq.(4.2.37) and shown in table 4.2.

Example 3: The third example is the Duffing’s equation, which has linear damping

term. This example can be expressed as
 + 0.01z + 0.225z + 0.0025z° = 0.02c0s0.5¢ (4.5.79)

The initial conditions are

#(0) = 0 (4.5.80)

The response of this system is illustrated in Fig. 4.3.
The HFM is the same with in Example 2. That is

X(k) = —ayz(k—1)— asz(k — 2) + asz’(k — 2)
+ a4z(k —2) 4+ 0.02c0s0.5(k — 2) (4.5.81)

In the HFM of this example, a quadric nonlinear term and cubic nonlinear terms are

assumed.
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Exact P. | Estimated P. | Error
0.0 0.0000064
0.0025 0.00256 2.4%

Table 4.3: The estimated nonlinear parameters

Sampling time period At = 0.05 is considered and 755 samples have been used.
Estimated sample range approximately is three period of the input and the output.

The results obtained are

a;, = -1.99890
as = 0.999460
as = 0.162931 x 1077

ag = —0.6407975 x 107° (4.5.82)

The estimated parameters of nonlinear terms of Duffing’s equation, Eq.(4.5.79), are
listed in table 4.3. The results show that there is mot the quadric nonlinearity of

displacement z(t).

Example 4:
Coulomb damping is the friction force between two contact surface. There is a

friction drag force.

cli|a (4.5.83)

where ¢ is a positive constant. A nonlinear SDOF structural dynamic system with
Coulomb damping is considered. This nonlinear dynamic system is denoted as following

differential equation.

£+0.225z 4+ 0.1 | | # = 0.02cos 0.5 (4.5.84)
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The initial conditions are

£(0) = 0 (4.5.85)

The responses z(t), z(t) of Eq.(4.5.84) are calculated by using Runge-Kutta method
and illustrated in Fig.4.4. Sampling time period At is assumed to be 0.05 and 755
samples of input and output are considered as data for identification.

The HFM of this system is assumed as
z(k) = —ayz(k — 1) — azz(k — 2) + a3 | 2(k — 2) | z(k — 2) (4.5.86)

Then a least squares problem is formed for estimating the parameters a,,a,,as. The

damping constant ¢ of Eq.(4.5.84) can be obtained by

asz -
C=_—Z—t-i (458()
The parameters, a;, a2, az of HFM are estimated by SVD method They are
a, = -1.99937
a; = 0.999926
as = —0.00024675 (4.5.88)

The Coulomb damping constant c estimated is 0.0987004. The error is 1.29%.

Example 5:

Usually a linear SDOF structural dynamic system
mi+cr+kr=u (4.5.89)

can be modeled by a discrete difference model for identification of system. (Fig.4.5)

The difference model is
z(k) = —arz(k — 1) — azz(k — 2) + u(k) (4.5.90)
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Figure 4.4: The response x(t) and J.((t-) of SDOF nonlinear dynamic syvstem with

Coulomb damping.
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K
u(k) -2 x(k)

-1 -2
1+ a,q" +anq

Figure 4.5: The linear dynamic system

where a; and a, are unknown parameters, which dominate the linear dynamic system.
The Model, Eq.(4.5.90) , is an input-output approach of linear dynamic system. It is
not possible to obtain the parameters m, k, ¢ in Eq.(4.5.89) from the parameters a,,
as.

In engineering, the m, k are easy to be obtained from the real structure. The damping
constant ¢ is necessary to estimate. In this case, the Hammerstein Feedback Model can
be used for identification of damping constant c. The linear dynamic system is assumed
as a feedback linear dvnamic system. It is illustrated in Fig.4.6. The parameters a;

and a, are calculated from m. k. The HFM of the system is to be
z(k)+ ayz(k — 1) —azx(k =2} = asz(k —2) ~ u(k = 2) (4.5.91)
Consider a linear dynamic system

4 0.225r — 0.01z = 0.02 cos 0.5 (4.5.92)
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u(k)
x(k)

1 ;)
l+alq +a,q

¢ x(k)

Figure 4.6: The linear model with damping feedback

with initial conditions:

#(0) =0 (4.5.93)

The responses z(t) and #(t) are illustrated in Fig.4.7. The sampling time period

At = 0.05 and 755 samples of input and output are taken for identification. The

estimated damping constant c is 0.00999692. The error is 0.03 %.
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Figure 4.7: The responses of linear dvnamic system
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CHAPTER V

IDENTIFICATION OF NONLINEAR MDOF
DYNAMICAL SYSTEM BY USING HFM

A' large and complex structural system is usually approximated by a multiple de-
grees of freedom (MDOF) dynamical system by using method, like the finite element
method. The identification and modeling of nonlinear MDOF dynamical systems by
the use of input and output data is then a very important problem in practical struc-
tural dynamical system. Masri, Millar, Sand, and Caughey [42] [43] presented a self-
starting multistage time-domain procedure for the identification of nonlinear MDOF
dynamical systems in free oscillations or subjected to an arbitrary direct force ex-
citations and nonuniform support motions. Yasuda, Kawamura and Watanabe [22]
presented a technique in frequency domain for identification of nonlinear MDOF dy-
namical system. This technique is as follows. The periodic steady state responses data
are measured from a MDOF nonlinear dynamical system subjected to a periodic force
excitation. The nonlinear terms are expressed in terms of polynomials with unknown
coefficients. The parameters are determined by expressing the quantities in a Fourier
series and by applying the principle of harmonic balance. Yun and Shnozuka [21] used
nonlinear Kalman filtering algorithms for identification of MDOF nonlinear structural
dynamical system.

In practical engineering, many systems have multiple input variables and multiple
output variables. Such a system can be said to be a multiple input and multiple output
(MIMO) dynamical system. In this case, identification of MIMO dynamical system
yields the learning problem of mapping between the multiple dimensional input space

and multiple dimensional output space. (Fig. 5.1)



U(k) X(K)

e —— e

__»| nonlinear dynamic —
system

—-1 —

Figure 5.1: MIMO dynamical system

For identification of nonlinear dynamical system, the Hammerstein Feedback Model

can be easily extended from SDOF case and SISO case to the MIMO case and MDOF

case.

5.1 The Hammerstein Feedback Model of Nonlinear MDOF Dynamic Sys-

tem

The HFM of a nonlinear SDOF dynamical system in discrete time domain is given by

Eq.(4.1.24) as follow

(k) = —aqz(b—1)— -+ — apxlh —n]
+ bmu(k-1)~ 1’1'72-‘1'2(]-‘ - 1)

e by = D e
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+ bomu(k—n)+ -+ bpypzf(k —n)

+ byt (k = 1)+ - + bapga?(k — n) (5.1.1)
If the input and output in Eq.(5.1.1) are now defined as input vector U(k),

k)

Uk) = f"(k) (5.1.2)

i Um (k)

-

output vector X (k) and output velocity vector ]\(k)

[ 21(k)

$2(k)

X(k) (5.1.3)

| z.(k)

[ (k) |

X(k) = %2(’“) (5.1.4)

&, (k)

L J

The HFM of nonlinear MDOF dynamical system can now be written in matrix form

as.
X(k) = —S AX(k-j)+ Y BiU(k-3)
i=1 j=1

+ S BIX*k-j)+ S BIX3(k - j)
i=1 7=1
4 -+ Y BIXP(k - )
=1
+ Y DX(k—j)+ -
Jj=1

+ Y DIXk - j) (5.1.5)

5=1
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where A7 is a 7 x r parameter matrix. Bj is a 7 x m parameter matrix. B3, B3, ---,

Bg, I";, I‘g are r x r diagonal parameter matrices ( y =1---n ), and

. o]
Z:1=1 E:2=1 7%'11!'231'1“" — J)zi, (k= J)

X*(k - j) =

E:]=1 2:221 7:1lzztl(k - J)zu(k - j) i
s . . T

2:‘1:1 Eig:l Ei;:l ’Yi],;,iazix(k — j)zi(k = 7)ziy (k — 7)

X3(k-3j)=
Tl o1 St Shym1 Thigis Tia (b = D)ziy (b — J)ziy (k — 7) ]
STy S T i (k= §) -z (k= 5) |
XP(k - 5) =

PDUNRTED AL TR O R 7)- ez (k= 7)

Shims Thes M (k = 3)E5(k — )
XMk —j)=|:

E:1=1 E:z 'u‘:ﬂziil(k - -7)2:12(": - J)

Thor o T iy Bi (k= 5) - i (k = )
Xk - j) =

=1t X Mg B (k= 5) - 2 (k= 5)

where 3 =1---n.

(5.1.6)

For nonlinear MDOF structural dynamical system, the order n is equal to 2. The

HFM of noplinear structural dynamical system in discrete time domain is

X(k) = —A'X(k—-1)- A’X(k-2)+ BiU(k - 2)
+ BIX*k-2)+BiX%k-2)+---
+ B2XP(k-2)+T3X7(k—2)+--
+ TIX%(k - 2)

(5.1.7)

To estimate parameters, the HFM in discrete time domain at ith degree of freedom can
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Figure 5.2: The Hammerstein Feedback Model of structural nonlinear MDOF dynam-

ical system
be denoted in following form.

k) = —ANX(k—1) - AIX(k-2)+ (B])U(k - 2)
+ (B})uXP(k = 2) 4o+ (BpuXP(k = 2)
L (TXk = 2) 4 -+ (T Xk = 2) (5.1.8)

where Al, A? and (B?); are the i'" row of matrices AY(r > 1), A%(r x ) and B}(r x m)
separately. (B3)i, . (Bf,)iz‘. (T2)i. -+, (Fg),‘,’ are the 1t" diagonal elements of matrices
B3 .-, Bz, I3, - Tg separately. The HFM of nonlinear MDOF dvnamical system
in discrete time domain can be illustrated by figure Fig.5.2.

Consider a nonlinear two degree of freedom spring-mass structural dynamical sys-
tem with cube nonlinear stiffness to show the application of HFM of nonlinear MDOF

dynamical system in discrete time domain (Fig.5.3). We have p = 3 and ¢ = 0 for the
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Figure 5.3: A nonlinear spring-mass structural dynamical system

HFM of this system and

o,
X(k) = z(k) (5.1.9)
L332(’“)
[ (k=2
U —2)= | M ) (5.1.10)
Lu;(k—?)
Al= o a (5.1.11)
i ay a4y ]
A% = @ (5.1.12)
02 a

—bzl b21
=" (5.1.13)

21 g2l
| by bz |

B: = (5.1.14)
S




b3 0
B:=| " (5.1.15)
0 b3
z3(k -2
X(k-2)= i(k=2) (5.1.16)
z2(k — 2)
where
2 2
22k —2) = Y Y vnz (k- 2)z,(k-2)
13=112=1
= Lk =2+ (G b )m(k = ek -2)
+y35(x2(k — 2))? (5.1.17)
2 2
zik—2) = Y N Az (k- 2)zi(k - 2)
n=11i2=1
= '71133(k 2) + (')'122 + '731)1'1("’ - 2)332(k -2)
+42,(zo(k — 2)) (5.1.18)
and
3k -2
Xk -9y = | FTY (5.1.19)
23k - 2)
where
\ 2 2 2
22(k-2) = YN 3 lnnzalk—2)zi(k = 2)zi (k- 2)
11=112=1143=1
= (k- 2))°
+(')':12 + 7:21 + ’7';11)(31(1‘7 - 2))232("' -2)
+("/1122 + '7';12 + 7’;21)31(1" - 2)(=za(k ~ 2))2
a0y (za(k = 2))° (5.1.20)
and

2 2 2
zy(k-2) = Z Z > Al i iy (k= 2)zi(k = 2)zi (k ~ 2)



+('7f12 + ’71221 + 7’:311)(131(]" - 2))2‘52(1" -2)
+(71222 + ’7312 + 7321)31("7 — 2)(z2(k — 2))2

+7322(22(k — 2))° (5.1.21)

Substituting X(k), U(k—2), Al, A%, B, B2, B, X2(k—2), X*(k —2) into Eq.(5.1.7),

we have the HFM of system in discrete time domain.

:Bl(k) =

Let

—ail:cl(k -1)- aizzcz(k -1) - a?lzl(k -2)
—a2,zy(k — 2) + bHus(k — 2) + blyua(k — 2)
+bi s (a(k = 2)) + b1 (112 + )ik — 2)z2(k — 2)
+b3373p (22(k — 2))° + i3y (ea(k — 2))°
+b33 (M2 + N2 + M) (@alk = 2))z2(k — 2)
+523 (1190 + V212 + va21) 21 (k — 2)(z2(k — 2))?
+b337300(22(K — 2))° (5.1.22)

—alzy(k — 1) — a}pzo(k — 1) — adyzi(k — 2)

—a2,z5(k — 2) + bZluy(k — 2) + bjjua(k — 2)

+b35 (21 (k — 2))° + 35(37; + 721) 21 (k = 2)z(k — 2)
+b3512025(k — 2) + bpprin(za(k — 2))°

+035(7h + Vi + M) (=za(k = 2))’xa(k - 2)

+b§g(7322 + Y32 + 7’321)-'51(" — 2)(za(k — 2))2

+b537720(z2(k — 2))° (5.1.23)
a = ail
a; = ‘112

ag = b2(11y +921)
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an
a:
a3
and
b,
b,

bs

b

b1z
bis

bﬁ(’hlxz + '7%21 + '7;11)
bf?('f;zz + '7;12 + 7:1221)

23_1
b1 17222

ax

12y
b33(7172 + 731

23, 2 2 2
b3a(mM12 + 7121 + "I’gn)

2 2
bgg(‘hzz + 7312 + 7221)

23_2
b327222

Then, the HFM of system can be represented by the following forms.

z1(k) = —aizi(k—1) — a2z2(k — 1) — aszi(k — 2)

—a4mz(k - 2) + asul(k - 2) + asuz(k - 2)

+aq(z1(k — 2))2 + agzi(k — 2)za(k — 2) + ag(x2(k — 2))2

taro(zi(k — 2))* + an(zi(k — 2)) z5(k — 2)

+012$1(k - 2)((32(’6 - 2))2 + alg(xz(k - 2))3

and

2a(k) = —byzi(k — 1) = bpzy(k — 1) — byz1(k — 2)

—b.;l’z(k - 2) + bgul(k - 2) + bsuﬂg(k - 2)

+br(za(k — 2))? + bszyza(k — 2)za(k — 2) + bo(z2(k — 2))°

+bio(zy(k — 2))® + biy(zi(k — 2))°z2(k — 2)
+baz1(k — 2)(z2(k — 2))* + bra(za(k — 2))°
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where parameters a;, az, - -+, a13 and by, b, - -+, bys are to be identified.

5.2 Estimation of Parameters of HFM

From Eq.(5.1.8), the HFM of nonlinear MDOF structural dynamical system can be
considered to be r submodels at it" degree of freedom (i = 1,2,---,7), in which the
U(k) is the input of system, and X (k), X (k) are the output of system. If Vi i Vi iaiss
... are equal to zero for i; # iz, 11 # 12 # 13, ** " for it" degree, the Eq.( 5.1.8) can be

represented in following form.

zi(k) —alzy(k — 1) = alpza(k — 1) + - — @y, z,(k — 1)

- ahyzi(k—2)—-- - ab,z.(k — 2)

+ aug(k—2)+ -+ Ghpum(k - 2)

4 d(za(k—2)) 4+ al (2. (k - 2))

+

4 alppan(@i(k = 2)P + -+ gz (k= 2)F

4 alan(da(k—2) + o+ 0l gy (e (k = 2))’

. .

bl (@1 = 2) 4+ Qg (@ (E = 2)) (5:2.28)

where i = 1,---,r, p is the order of nonlinear stiffness and ¢ is the order of nonlinear
damping. By taking N + n samples of the input U(k) and the outputs X (k) and X (k)
and substituting the measured data into Eq.(5.2.28), we obtain a set of linear algebraic
equations with unknown variables, which are system parameters. The set of equations

can be written as following form in matrix.

X' = A'® (5.2.29)
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where t = 1,---,7 and

[ 2i(k)
X = fEi(k +1)
i Zi(k + N) ]
—z1(k-1) —zo(k—1) .- -z,(k-1)
—z:1(k) —za(k) - —z.(k)
| —zi(k+ N - 1) —z9(k+N-1) -+ —z.(k+N-1)
—z1(k - 2) —xa(k-2) --- ~z.(k-2)
—z;(k - 1) —zo(k—-1) --- —z.(k-1)
—z(k+N—=2) —z2(k+N-2) -+ —z,(k+N-2)
u(k —2) us(k—2) --- Um(k — 2)
u(k—1) ug(k—1) --- Um(k — 1)
u(k+N—=2) us(k+N-2) -+ un(k+ N -2)
(2:(k=2))?  (zak=2)* -+ (2(k-2))
(z.(k ~1))?

(z1(k - 1))? (z2(k — 1)) -

(z1(k + N = 2))? (z2(k+ N —2))* ...

(xl(k - 2))p (wz(k - 2))p
(z1(k — 1)) (z2(k — 1))

(zy(k+ N = 2)) (za2lk+ N -2))F ---

50

(z.(k+ N —-2))

(5.2.30)



(21(k — 2))? (z2(k — 2))?
(21(k — 1))? (z2(k — 1))

(£:(k+ N =2))* (22(k + N -2))’

(21(k - 2)) (22(k — 2))°
(21(k = 1)) (z2(k — 1))

(#1(k + N —2)) (z2(k+ N —2))f

1

aq

i
aq,

1
a,

i
a2

a’2r
a3

1
a3m

i
a4

;
G p+g+1)r |

N

(z.(k+ N —2))7 |

(5.2.31)

(5.2.32)

If we have only white noise, the problem of the identification of the parameter vector

©' from Eq.(5.2.29) becomes a standard least square problem. Then, the parameter

vector ©' can be estimated by SVD method.
@i — (At )+Ari
where (i = 1,2,---,7).
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Figure 5.4: A two degree of freedom spring-mass nonlinear dynamical system

5.3 Numerical Examples

A two degree of freedom spring-mass nonlinear dynamical system is considered in

Fig.(5.4). Mass and stiffness matrices are [22]

L
(M] = (5.3.34)
0 1

[K]:{ 2 _l} (5.3.35)

. 0.1 —0.05
Cl=
—0.05 0.1

and the nonlinear vector [N' and force [F, are

. 0.12%3 = 0.1(z; — 2)°
= { : ' ] (5.3.37)

0.11:13' - 0.1(xy — 1'1)3

The damping matrix is

—_—
n
oo
w
(=]

(1]
o



[F] =

coswt
0

The differential equation of motion of the system is

[M[X] + [CIX] + [K]IX] + [N] = [F)

where )
o z,
[X]=1 .
Z2
. T,
(X]=|
| #2
, T
[X] =
)

Example 1:

In the first example , damping is neglected, Eq. (5.3.39) becomes
[M][X] + [K][X] + [N] = [F]
The Eq.(5.3.43) can be rewritten as
T, + 22, - x2 4+ 0.23‘;’ - 0.31:31:2

+0.3z1z§ — 0.1:1:2 = coswt

£y — T1 + 22, + 0.225 — 0.3ziz,

+0.3z,22 — 0.1z = 0

(5.3.38)

(5.3.39)

(5.3.40)

(5.3.41)

(5.3.42)

(5.3.43)

(5.3.44)

(5.3.45)

In order to create a set of simulated experimental data, Runge-Kutta method is

used to numerically integrate the equations (5.3.44), (5.3.45) and find z;(k), z2(k) with

initial conditions z,(0) = 1, ,(0) = 0, z5(0) = 0, 2(0) = 0. Then, we have input

data coswk and the output data z,(k) (Fig. 5.5), z2(k) (Fig. 5.6) that can be used
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for identification of the system.

According to Eq.(5.1.26) and Eq.(5.1.27), the HFM of nonlinear dynamical system

Eq.(5.3.43) in discrete time domain can be assumed as following forms.

For z;:
zi(k) = —ayzy(k = 1) — azzq(k - 2)
+ asza(k — 2) + as(z1(k - 2))°
+ as(zi1(k - 2))2zo(k — 2)
+ aezi(k — 2)(za2(k — 2))
+ az(za(k = 2))® + cosw(k — 2) (5.3.46)
za(k) = —bizao(k — 1) — byzy(k — 2)
+ bazi(k — 2) + by(za(k — 2))°
+ bs(z2(k — 2)) 21 (k - 2)
+ beza(k — 2)(z1(k — 2))?
4+ bi(zq(k—2))° (5.3.47)
where a;,as,---,az,by, -+ ,br are unknown parameters. Assume w = 0.5, sampling

time period At = 0.05, and 502 samples of input and output are taken. The results
estimated by SVD method have been listed in Table 5.1, and Table 5.2.

Example 2:

The second example is Eq.(5.3.39). A linear damping term is considered. The
needed experimented outputs z,(k) (Fig. 5.7) and z,(k) (Fig. 5.8) are again simulated
by using Runge-Kutta method. The HFM in discrete time domain is

z:l(k) = -0‘111(k - 1) - agzr](k - 2)
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Figure 5.5: The response z,(t) of two degree of freedom mass-spring nonlinear system

without damping
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Figure 5.6: The response z,(t} of two degree of freedom mass-spring nonlinear system

without damping.
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P | Real P | Est. P | Error
a; | -1.995 | -1.995 0

as 1 1 0

as 1 0.99864 | 0.14%
ag | -0.2 -0.1994 | 0.06%
as | 0.3 0.29893 | 0.35%
ag | -0.3 |[-0.29898 | 0.35%
a- | 0.1 0.0997 | 0.3%

Table 5.1: Estimated parameters

P |Real P Est. P Error

by | -1.995 -1.995 0

b, 1 1 0

bs 1 0.99952 | 0.05%

by | -0.2 -0.1992 | 0.07%

bg 0.3 0.298169 | 0.6%

b | -0.3 |-0.298756 | 0.4%
b | 0.1 0.099566 | 0.4%

Table 5.2: Estimated parameters
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P |Real P | Est. P Error
a; | -1.99 | -1.99002 | 0.005%
a; | 0.995 | 0.99501 | 0.0012%
as 2 1.98684 | 0.66%
as -1 -0.99476 0.5%
as | -0.2 [-0.198628 | 0.69%
ag | 0.3 0.30208 0.69%
a7 | -0.3 -0.3061 2%
as 0.1 -0.94646 5%

Table 5.3: Estimated Parameters

+ 03132(’6 - 1) + a4:cg(k - 2)

+ as(zi(k —2))® + a(z1(k — 1))2z2(k — 2)
+ (17231(}6 - 2)(1!2(’\‘, - 2))2
+ ag(za(k — 2))% + cosw(k — 2)
xz(k') = —bl:c-_;(k - 1) - bgzz(k - 2)
-+ b3£1(k— 1)+b4$1(k—2)
4+ bs(za(k — 2))% + be(z2(k — 2)) 21 (k — 2)
-+ b7332(k - 2)(&1(}6 - 2))2 + bg(ml(k - 2))3
where ay,--+,ag, by, -+, bg are unknown parameters. 402 samples of input and output

are taken and w = 0.5, sampling time period At = 0.05 are assumed.

estimated by SVD method are shown in Tables 5.3, 5.4.

Example 3:
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P |Real P| Est. P Error
by | -1.99 | -1.99004 | 0.002%
b, | 0.995 | 0.995016 | 0.0016%
bs 2 1.99138 | 0.43%
by -1 -0.99566 | 0.43%
by | -0.2 |-0.20172 | 0.8%
be | 0.3 [0.301755 | 0.6%
b1 -0.3 -0.30002 | 0.01%
b 0.1 0.09905 0.95%

Table 5.4: Estimated parameters

In this example, a Coulomb damping force is considered. This Coulomb damping

force is assumed as a nonlinear term in Eq.(5.3.39).

0.2 | 1 | &, }
(5.3.50)

[N] = o
02|z | 22

The equation of motion of this system is

[M)[£] + [K][z] + [N] = [F] (5.3.51)
The initial conditions are:
z1(0) = 1.0
#,(0) =0
25(0) = 0
#,(0) =0 (5.3.52)

The simulated responses of displacement and velocity are obtained by using Runge-

Kutta method from Eq.(5.3.51) and illustrated in Fig. 5.9 and Fig. 5.10. Sampling
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P | Real P| Est. P | Error
C11 0.2 0.1988 06%
Ca2 0.2 0.20004 | 0.002%

Table 5.5: Estimated parameters

time period At = 0.05 and 502 samples of input and output are considered. The

estimated results are listed in Table 5.5.

Example 4:

In practical engineering, the real damping usually is different from design damping.
Identification of the difference is useful for analysis, design, and control. If the mass
matrix [M], stiffness matrix [K], and damping matrix [C] are known, the difference
of damping can be estimated by using Hammerstein Feedback Model. The difference
of damping is assumed to be [dC]. We assume a linear dynamical system as following

differential equation.
(M[£) + ([C) + )] + [K)f<) = [F) (5.3.53)

where difference of damping is assumed as

[dC) = (5.3.54)

—0.005 0.05

0.05 —0.005 ]

The responses of displacement z,(t), z,(t) and velocity £,(t), 2(t) are obtained by
using Runge-Kutta method from Eq.(5.3.53) and shown in Fig. 5.11 and Fig. 5.12.
The HFM of the system is assumed as

z1(k) + a1z1(k — 1) + eaz1(k — 2) + asz2(k — 2) + cos 0.5(k — 2)

= a4:i:1(k—2)+a5i'2(k— 2) (5355)
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Figure 5.9: The responses x; and &, of two degree of freedom nonlinear dynamical

svstem with Coulomb damping
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Figure 5.10: The responses 7, and &, of two degree of freedom nonlinear dvnamical

svstem with Coulomb damping
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P | Real change | Est. change | Error
deny 0.05 0.050038 | 0.008%
dcis -0.005 -0.0050528 1.1%
dcay -0.005 -0.00496 0.8%
dess 0.05 0.04994 0.12%

and

Zg(k) + b]l‘z(k - 1) + b2$2(k - 2) + b3151(k - 1)

Table 5.6: Estimated parameters

= b4$2(k - 2) ‘+ b51§](k - 2)

(5.3.56)

where a;, a3, as, by, ba, bs are calculated from [M], [K] and [C]. The [dC] has elements:

dcyy =

dC12 =
dcy =

d622 =

(At)?

(5.3.57)

At = 0.05 and 502 samples of the input and output are considered, then the estimated

parameters are shown in Table 5.6 .

5.4 Sampling time period and estimate range

In this section, the two degree of freedom nonlinear dynamical system with Coulomb

damping, numerical example 3, is considered to examine the effect of sampling time

period. This example has the equation of motion, Eq.(5.3.51), and initial condition

Eq.(5.3.52).
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Figure 5.12: The responses ;. 2 of TDOF nonlinear dynamical system
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Fig.5.13 and Fig. 5.14 show the estimated Coulomb damping parameters of Eq.(1)
and Eq.(2) of Eq.(5.9) vary with sampling numbers in a quarter of period, separately.

Fig.5.15 and Fig.5.16 show the estimated Coulomb damping parameters of Eq.(1)
and Eq.(2) of Eq.(5.3.51) vary with sampling numbers in one half of period, separately.

Fig.5.17 and Fig.5.18 show the estimated Coulomb damping parameters of Eq.(1)
and Eq.(2) of Eq.(5.3.51) vary with sampling numbers in a period, separately.

The sampling ranges of responses, z,, &1, T2, and &, of system for estimation are
denoted in Fig. 5.19 and Fig.5.20.

The results denote that the nonlinear Coulomb parameters of MDOF nonlinear
‘dynamical system can be estimated even if using few samples in a small estimated

range.
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